負9x的平方根x0是二次根式嗎

2021-03-03 21:34:24 字數 5766 閱讀 5460

1樓:裁判

二次根式的定義是:形如正負根號a,a

大於等於零,這種形式都是二次根式

其中的負9x,因為x小於零,所以負9x大於零,負9x可以作為被開方數,所以他是二次根式

2樓:羅羅

是二次根式。

為:正負根號-9x

注意:是正負二個。其中正的那個為算術平方根。

x必須小於等於0

否則無平方根。

請參考。

3樓:雪山蒼

是二次根式,被開方數是非負數

負數有沒有平方根

4樓:韓苗苗

負數在實數系內沒有平方根,只有在複數系內,負數有一對平方根。負數的平方根為一對共軛純虛數。

例如:-1的平方根為±i,-9的平方根為±3i,其中i為虛數單位。

擴充套件資料

平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根(arithmetic square root)。一個正數有兩個實平方根,它們互為相反數,負數有兩個共軛的純虛平方根。

算術平方根定義:

如果一個非負數x的平方等於a,那麼這個非負數x叫做a的算術平方根,記作

a叫做被開方數。例如:因為2和-2的平方都是4,且只有2是正數,所以2就是4的算術平方根。

平方根是開方運算的基礎,是引入無理數的準備知識。平方根概念的正確理解有助於符號表示的理解,是正確求平方根運算的前提,並且直接影響到二次根式的學習。算術根的教學不但是本章教學的重點,也是今後數學學習的重點。

在後面學習的根式運算中,歸根結底是算術根的運算,非算術根也要轉化為算術根。

5樓:真心話啊

負數在實數內沒有平方根;只有在複數系內,負數才可以開平方。

負數在實數系內不能開平方。只有在複數系內,負數才可以開平方。負數的平方根為一對共軛純虛數。

平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根。一個正數有兩個實平方根,它們互為相反數,負數有兩個共軛的純虛平方根。

6樓:u愛浪的浪子

負數沒有平方根;原因如下:

因為任何數的二次

冪都是非負數,也就是說:沒有哪一個數的平方會是一個負數. 因此,負數就不存在平方根了。規定:0的算術平方根為0。

7樓:匿名使用者

負數在實數系內不能開平方。只有在複數系內,負數才可以開平方。負數的平方根為一

對共軛純虛數。例如:-1的平方根為±i,-9的平方根為±3i,其中i為虛數單位。

平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根(arithmetic square root)。一個正數有兩個實平方根,它們互為相反數,負數有兩個共軛的純虛平方根。

任意非負實數都有唯一的非負平方根,稱為算術平方根或主平方根(英語:principal square root),記為 √x,其中的符號√稱作根號。

例如,9的算術平方根為3,記作√9=3,因為32=3×3=9並且3非負。被求平方根的數稱作被開方數(英語:radicand),是根號下的數字或者表示式,即例子中的數字9。

2023年leconardo在practica geometriae使用r(r右下角的有一斜劃,像p和x的合體); √(沒有上面的橫劃)是由克里斯多福·魯登道夫在2023年的書coss首次使用,據說是小楷r的變型;

後來數學家笛卡爾給其加上線括號,但與前面的方根符號是分開的(即「√ ̄」),因此在複雜的式子中它顯得很亂。

直至18世紀中葉,數學家盧貝將前面的方根符號與線括號一筆寫成,並將根指數寫在根號的左上角,以表示高次方根(當根指數為2時,省略不寫)。從而形成了現在人們熟知的開方運算子號。

8樓:陸宵

實數範圍內負數沒有平方根,複數範圍內,負數有兩個虛數平方根。

平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根(arithmetic square root)。一個正數有兩個實平方根,它們互為相反數,負數有兩個共軛的純虛平方根。

9樓:我是一個麻瓜啊

沒有,只有正數和0有平方根,正數的平方根互為相反數,0的平方根是0,算數平方根也只有正數和0有,那麼一個數的算術平方根就是那個數平方根中的正數。

負數在實數系內沒有平方根,只有在複數系內,負數有一對平方根。負數的平方根為一對共軛純虛數。例如:-1的平方根為±i,-9的平方根為±3i,其中i為虛數單位。

平方根,是指自乘結果等於的實數,表示為±(√x),讀作正負根號下x或x的平方根。其中的非負數的平方根稱為算術平方根。正整數的平方根通常是無理數。

定義:在分數指數中,依定義,可知開平方運算對乘法滿足分配律,即:注意若n是非負實數且時,因為必定是正數,但有正負兩個解。 應等於±;即(見絕對值)。

10樓:高貴中的卑微

平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根(arithmetic square root)。一個正數有兩個實平方根,它們互為相反數;0只有一個平方根,就是0本身;負數有兩個共軛的純虛平方根。

一般地,「√ ̄」僅用來表示算術平方根,即非負數的非負平方根。如:數學語言為:√ ̄16=4。語言描述為:根號下16=4

負數在實數系內不能開平方。只有在複數系內,負數才可以開平方。負數的平方根為一對共軛純虛數。例如:-1的平方根為±i,-9的平方根為±3i,其中i為虛數單位。

11樓:

負數的平方根在實數範圍內無值,負數的平方根就是虛數(也稱複數)

12樓:匿名使用者

負數沒有平方根,因為正數和負數的平方都是正數(負負得正),所以負數燙有平方根。

13樓:水雲間

實數集裡沒有

複數集裡有

i平方=-1

14樓:為夢想而

負數沒有平方根,但是有立方根

15樓:李敏鎬的哥哥

負數是沒有平方根的。

16樓:上海虹橋

初中數學沒有,高中數學有

17樓:薰衣草小黃

有,如根號-9,在數學上表示為3i?(字母i)

18樓:雁泣愁

我只知在初中是沒有的

根號x一定是二次根式嗎

19樓:匿名使用者

二次根式的定義和概念:

1、定義:一般形如√ā(a≥0)的代數式叫做二次根式。當a≥0時,表示a的算術平方根;當a小於0時,非二次根式(在一元二次方程中,若根號下為負數,則無實數根)被開方數必須大於等於0。

2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。其中,a叫做被開方數。

如果是一道數學題的話,我會這樣回答:

1如果x<0,這是虛數,肯定不是二次根式。

2如果x=n的平方,n>0,則根號x則不是二次根式,因為都能夠被開方出來。這個情況其實包括的第二個假設。

綜上,只有當x不等於n平方的時候(n>0),根號x才會是二次根式。x<0,這是虛數範圍。根號負1=i呢。

什麼是二次根式?能不能舉幾個例子,

20樓:匿名使用者

一、定義

一般地,形如√ā(a≥0)的代數式叫做二次根式。當a≥0時,√ā表示a的算術平方根當a小於0時,非二次根式(在一元二次方程中,若根號下為負數,則無實數根)

概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。

兩個含有二次根式的代數式相乘,如果他們的積不含有二次根式,那麼這兩個代數式叫做互為有理化因式。

最簡二次根式條件:

1.被開方數的因數是整數或字母,因式是整式;

2.被開方數中不含有可化為平方數或平方式的因數或因式。

二、例子

根號9是二次根式,雖然根號9等於3,但是3不是二次根式,因此二次根式只是一個形式。

根號15也是二次根式;根號16也是二次根式。

擴充套件資料

性質:4、有理化根式:如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式互為有理化根式,也稱互為有理化因式。

21樓:愛笑的

一般地,形如√a的代數式叫做二次根式,其中,a 叫做被開方數。當a≥0時,√a表示a的算術平方根;當a小於0時,√a的值為純虛數(在一元二次方程求根公式中,若根號下為負數,則方程有兩個共軛虛根)。

判斷一個二次根式是否為最簡二次根式主要方法是根據最簡二次根式的定義進行,或直觀地觀察被開方數的每一個因數(或因式)的指數都小於根指數2,且被開方數中不含有分母,被開方數是多項式時要先因式分解後再觀察。

舉例:√2、√3、√6、√7、√a等。

擴充套件資料:

一、定義

如果一個數的平方等於a,那麼這個數叫做a的平方根。a可以是具體的數,也可以是含有字母的代數式。

關於二次根式概念,應注意:

被開方數可以是數 ,也可以是代數式。被開方數為正或0的,其平方根為實數;被開方數為負的,其平方根為虛數。

二、性質

4. 有理化根式:如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式互為有理化根式,也稱互為有理化因式。

22樓:匿名使用者

解:形如√a (a≥0)的式子,叫二次根式。

如:√2 ,√0.5 ,√(2/3)。。。。。

【注意:a≥0,是必須的!】

【俊狼獵英】團隊為您解答

23樓:石上聽泉響

一般形如√ā(a≥0)的代數式叫做二次根式。√2、√3、√6、√7、√a

24樓:匿名使用者

概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。其中,a叫做被開方數。

什麼是二次根式

25樓:河傳楊穎

根號x平方+2x+1是二次根式

一般地,形如√ā(a≥0)的代數式叫做二次根式。當a≥0時,√ā表示a的算術平方根當a小於0時,非二次根式(在一元二次方程中,若根號下為負數,則無實數根)

概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。

兩個含有二次根式的代數式相乘,如果他們的積不含有二次根式,那麼這兩個代數式叫做互為有理化因式。

最簡二次根式條件:

1.被開方數的因數是整數或字母,因式是整式;

2.被開方數中不含有可化為平方數或平方式的因數或因式。

運算加減法

1.同類二次根式

一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。 化簡:根號12等於4的根號3

2.合併同類二次根式

把幾個同類二次根式合併為一個二次根式就叫做合併同類二次根式。

3.二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併。

26樓:匿名使用者

1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式。當a≥0時,√ā表示a的算術平方根當a小於0時,非二次根式(在一元二次方程中,若根號下為負數,則無實數根) 2、概念:

式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。

根號x平方+2x+1

(當x平方+2x+1大於等於零時《式子還沒算完!》,根號x平方+2x+1是二次根式.

一元二次方程x的平方 x 0的解是

有如下幾種 第一種 運用因式分解的方法,而因式分解的方法有 1 十字相乘法 又包括二次項係數為1的和二次項係數不為1,但又不是0的 2 公式法 包括完全平方公式,平方差公式,3 提取公因式 例1 x 2 4x 3 0 本題運用因式分解法中的十字相乘法,原方程分解為 x 3 x 1 0 可得出x 3或...

負的根號下5是二次根式嗎,二次根號下負5的平方是二次根式嗎

不是。它只是個常數。二次根式指的是未知數的最高次是二次 是 二次根式是指根號外次數是二 二可以省略 所以就是一個根號 二次根號下負5的平方是二次根式嗎 不是的 算出結果是5.二次根式要是最簡化後含有根式的 謝謝採納 希望bai能幫到你 5 2是二du次zhi根式 分析 形如 dao a a 0 的式...

二次根式中,字母x的取值範圍是,求下列二次根式中字母x的取值範圍qwq要過程

x 1.試題分析 根據被開方數大於等於0列式計算即可得解.試題解析 根據題意得,x 1 0,解得x 1.故答案為 x 1.考點 二次根式有意義的條件.求下列二次根式中字母x的取值範圍 qwq要過程 3 x2 1 0,x可以取任意實數 4 x 0且x2 4 0 所以x 0且x 2 3 x屬於任意實數 ...