1樓:匿名使用者
解:a(n+1)-1=1/2(an-1)
所以是公比1/2的等比數列
而a1-1=1
所以an-1=1/2^(n-1)
an=[1/2^(n-1)]+1
2樓:6一切順心
舉一反三是目標,來龍去脈最重要,公式口訣不強調,死記硬搬會誤導!
3樓:臭皮蛋
我曾經試過解這道bai題,但用du常規遞推方法和不動點法均zhi無法解決。於是
dao我斷定這
4樓:windyy煙花三月
解:∵a(n+1)-1=1/2(an-1)∴a1-1=1
∴是公比1/2的等比數列
∴an-1=1/2^(n-1)
∴an=[1/2^(n-1)]+1
5樓:匿名使用者
手機需要下
copy載軟體,第一次開啟需要進行身份確認,按照提示一步一步往下選擇即可,儘量填寫真實資訊,有助於專家給你提供建議,也是為自己的身體健康負責。 身份確認完成之後,便會進入到首頁,首先看到的會是熱量消耗了多少,在最頂端會有日期的選擇,也可以點左上角的分享,讓朋友看到自己的最新鍛鍊
已知數列an 滿足a1=1 an+1=an/1+an 求數列an的通項公式
6樓:116貝貝愛
數列an的通項公式為:2n-1
解題過程如下:
由an+1=2an+1得an+1+1=2(an+1)
又an+1≠0,
∴an+1+1
an+1
=2即為等比數列
∴an+1=(a1+1)qn-1
即an=(a1+1)qn-1-1
∴=2•2n-1-1
∴=2n-1
求數列極限的方法:
設一元實函式f(x)在點x0的某去心鄰域內有定義。如果函式f(x)有下列情形之一:
1、函式f(x)在點x0的左右極限都存在但不相等,即f(x0+)≠f(x0-)。
2、函式f(x)在點x0的左右極限中至少有一個不存在。
3、函式f(x)在點x0的左右極限都存在且相等,但不等於f(x0)或者f(x)在點x0無定義。
則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。
對於一個數列,如果任意相鄰兩項之差為一個常數,那麼該數列為等差數列,且稱這一定值差為公差,記為 d ;從第一項 a1到第n項 an的總和,記為sn 。
對於一個數列 ,如果任意相鄰兩項之商(即二者的比)為一個常數,那麼該數列為等比數列,且稱這一定值商為公比 q ;從第一項a1 到第n項an 的總和,記為tn 。
7樓:憶安顏
an=1/n
解:因為an+1=an/1+an
所以兩邊同時取倒數得1/an+1=1+an/an=1/an+1
等價於1/an+1-1/an=1
所以(1/a2-1/a1)+(1/a3-1/a2)+...+(1/an+1-1/an)=1/an+1-1/a1=n(應為括號裡都為1,一起加上的總和)
所以得到1/an+1-1/a1=n即1/an+1-1=n
所以1/an+1=n+1
所以an=1/n
擴充套件資料
如果數列的第n項an與n之間的關係可以用一個公式來表示,這個公式叫做數列的通項公式。有的數列的通項可以用兩個或兩個以上的式子來表示。沒有通項公式的數列也是存在的,如所有質陣列成的數列。
性質1、若已知一個數列的通項公式,那麼只要依次用1,2,3,...去代替公式中的n,就可以求出這個數列的各項。
2、不是任何一個無窮數列都有通項公式,如所有的質陣列成的數列就沒有通項公式。
3、給出數列的前n項,通項公式不唯一。
4、有的數列的通項可以用兩個或兩個以上的式子來表示。
8樓:drar_迪麗熱巴
(1)∵∵an+1=2an+1,
∴an+1+1=2(an+1),
∵a1=1,∴a1+1=2≠0,
∴數列是以2為首項,2為公比的等比數列,
∴an+1=2?2n-1=2n,
即an=2n-1,求數列的通項公式an=2n-1;
(2)若數列滿足4b1?14b2?1…4bn?1=(an+1) bn(n∈n*),
則4b1?14b2?1…4bn?
1=(2n) bn,即2[b1+b2+…+bn-n]=nbn,①2[b1+b2+…+bn+1-(n+1)]=(n+1)bn+1,②,②-①得2(bn+1-1)=(n+1)bn+1-nbn,即(n-1)bn+1-nbn+2=0,③
nbn+2-(n+1)bn+1+2=0,④③-④,得nbn+2-2nbn+1+nbn=0,即bn+2-2bn+1+bn=0,
則bn+2+bn=2bn+1,
∴是等差數列.
等差數列是指從第二項起,每一項與它的前一項的差等於同一個常數的一種數列,常用a、p表示。這個常數叫做等差數列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。通項公式為:
an=a1+(n-1)*d。首項a1=1,公差d=2。前n項和公式為:
sn=a1*n+[n*(n-1)*d]/2或sn=[n*(a1+an)]/2。
9樓:浩然之氣
是an+1還是a(n+1)
已知數列{an}中,a1=2/3,an+1=2an/1+an,求數列{an}的通項公式
10樓:匿名使用者
解:a(n+1)=2an/(1+an)
1/a(n+1)=(1+an)/(2an)=(1/2)(1/an) +1/2
1/a(n+1) -1=(1/2)(1/an) -1/2=(1/2)(1/an -1)
[1/a(n+1) -1]/(1/an -1)=1/2,為定值。
來1/a1 -1=1/(2/3) -1=3/2 -1=1/2數列自是以1/2為首項,1/2為公比的等bai比數du列。
1/an -1=(1/2)×(1/2)^(n-1)=1/2ⁿ1/an=1+ 1/2ⁿ=(2ⁿ+1)/2ⁿan=2ⁿ/(2ⁿ+1)
n=1時,a1=2/(2+1)=2/3,同樣滿足通zhi項公式dao
數列的通項公式為an=2ⁿ/(2ⁿ+1)
11樓:珠海
答:因為a(n+1)=2an/(1+an)所以1/a(n+1)=(1+an)/(2an)=1/2+1/(2an)
令=,當n=1時b1=3/2
所以b(n+1)=1/2+bn/2
用待定係數法:b(n+1)+k=(bn+k)/2,即b(n+1)=(bn-k)/2,即-k=1,所以k=-1;
所以b(n+1)-1=(bn-1)/2
即[b(n+1)-1]/(bn-1)=1/2當n=1時b1-1=1/2
所以是以首項為1/2,公比為1/2的等比數列。
所以bn-1=1/2^n
所以bn=1+1/2^n
所以an=1/(1+1/2^n)=2^n/(1+2^n)=1-1/(1+2^n)
an=1-1/(1+2^n)
12樓:星晴
解:an+1=2an/(1+an),取倒數得:1/(an+1)=(1+an)/2an,即1/(an+1)=1/2+1/2an,左右兩邊減1
得:1/(an+1) -1=1/2an-1/2=(1/an-1)/2,即:[1/(an+1) -1]/[(1/an-1)]=1/2,所以數列是公比為內1/2,首容相為1/2的等比數列,1/an-1=(1/2)*(1/2)^(n-1)=(1/2)^n,所以an=1/[(1/2)^n+1]
在數列{an}中,已知a1=2,a(n+1)=2an/(an+1),求數列{an}通項公式.
13樓:西域牛仔王
^1)a(n+1)=2an/(an+1)
1/a(n+1)=1/2(1+1/an)
1/a(n+1)-1=1/2(1/an-1)
所以 {1/an-1}是 首項為 -1/2,公比為 1/2 的等比數列,
故 1/an-1=-(1/2)^n
所以 an=1/[1-(1/2)^n]=2^n/(2^n-1)
2)ai(ai-1)=2^i/(2^i-1)^2=1/(2^i+1/2^i-2)
由於 a1(a1-1)+a2(a2-1)=2+4/9=22/9
且當 i>=3時,ai(ai-1)=2^i/(2^i-1)^2=1/(2^i+1/2^i-2)<=1/(2^i-2)<=1/2^(i-1)
所以 ∑(i=3 to n) ai(ai-1)<=1/4+1/8+..+1/2^(n-1)<=1/2
因此,∑(i=1 to n) ai(ai-1)<=22/9+1/2=53/18<3
14樓:尐尒倩
1.因為a(n+1)=2an/(an+1)
左邊右邊都成倒數。1/a(n+1)=(an+1)/2an=1/2+1/2an
所以(我懷疑你題目有沒有少抄一個2)沒有的話告訴我。我繼續做。
15樓:匿名使用者
^1)令來bn=1/an, 則自b1=1/2,
因為a(n+1)=2an/(an+1),
所以b(n+1)=bn/2+1/2,
即b(n+1)-1=(bn-1)/2
所以是以-1/2為首項,以1/2為公比的等比數列,bn-1=-(1/2)^n
所以bn=1-(1/2)^n
即an=1/bn=2^n/(2^n-1)
2)ai(ai-1)=2^i/(2^i-1)^2=1/(2^i+1/2^i-2)
由於 a1(a1-1)+a2(a2-1)=2+4/9=22/9
且當 i>=3時,ai(ai-1)=2^i/(2^i-1)^2=1/(2^i+1/2^i-2)<=1/(2^i-2)<=1/2^(i-1)
所以 ∑(i=3 to n) ai(ai-1)<=1/4+1/8+..+1/2^(n-1)<=1/2
因此,∑(i=1 to n) ai(ai-1)<=22/9+1/2=53/18<3
16樓:匿名使用者
對a(n+1)=2an/(an+1)兩邊同取自倒數
2/a(n+1)=1/an+1
再給上式兩邊同乘以2^n,可得2^(n+1)/a(n+1)=2^n/an+2^n
令b(n+1)=2^(n+1)/a(n+1),則bn=2^n/an那麼有:b(n+1)-bn=2^n,b1=2^1/a1=1
所以:bn-b(n-1)=2^(n-1)
b(n-1)-b(n-2)=2^(n-2)
………………
b2-b1=2
根據累加法:bn-b1=2+……2^(n-2)+2^(n-1)
這樣bn=1+2+……2^(n-2)+2^(n-1)=1(1-2^n)/(1-2)=2^n-1
即有:2^n/an=2^n-1那麼an=2^n/(2^n-1)
ai(ai--1)=2^n/(2^n-1)[2^n/(2^n-1)-1]=2^n/(2^n-1)[1/(2^n-1)]=2^n/(2^n-1)^2>0
兩邊倒數:1/[ai(ai--1)]=(2^n-1)^2/2^n=[2^(2n)-2*2^n+1]/2^n=2^n+1/2^n-2
然後根據等比數列求和方縮即可證。
等差數列an中,已知a1 3,a4 12 若1 求數列an的通項公式2 若a2 a4分別為等比數列bn的第
a4 a1 3d,則d 3,則an a1 n 1 d 3n a2 6,a4 12,則 b1 6,b2 12,公比q b2 b1 2,則bn 6 2 n 1 3 2 n,的前n項和是sn,則 sn b1 1 q n 1 q 3 2 n 1 6 2 n表示2的n次方 1 a4 a1 3d 9,則d 3,...
在數列an中,a113an1ann
證明 因為 a n 1 n 1 an 3n 方程兩邊同時除以 n 1 得 a n 1 n 1 an 3n 方程兩邊同時除以 an n 得 a n 1 n 1 an n 1 3 所以,an n 是等比數列。a1 1 3,a2 1 1 1 3 3 1 2 9 2a1 3,a3 2 1 2 9 3 2 1...
an中,構造新數列a1,a2 a1,a3 a2an an 1此數列首項為1公比為
中,構造新數列a1,a2 a1,a3 a2,an an 1,此數列首項為1公比為1 3的等比數列 因為首項為1,等比為1 3 所以可以得出 a1 1,a2 4 3,a3 13 9,a4 40 27 可以看的出他的規律是 an a n 1 1 3 n 1 a n 1 a n 2 1 3 n 2 帶入上...