怎麼判斷髮散還是收斂如何判斷一個數列是發散還是收斂要詳細點容易懂點

2021-03-05 09:21:55 字數 3616 閱讀 9624

1樓:angela韓雪倩

第一個其實就是正項的等比數列的和,公比小於1,是收斂的。

第二個項的極限是∞,必然不收斂。

拓展資料:

簡單的說

有極限(極限不為無窮)就是收斂,沒有極限(極限為無窮)就是發散。

例如:f(x)=1/x 當x趨於無窮是極限為0,所以收斂。

f(x)= x 當x趨於無窮是極限為無窮,即沒有極限,所以發散。

收斂數列與其子數列間的關係

子數列也是收斂數列且極限為a恆有|xn|若已知一個子數列發散,或有兩個子數列收斂於不同的極限值,可斷定原數列是發散的。

發散級數指不收斂的級數。一個數項級數如果不收斂,就稱為發散,此級數稱為發散級數。一個函式項級數如果在(各項的定義域內)某點不收斂,就稱在此點發散,此點稱為該級數的發散點。

按照通常級數收斂與發散的定義,發散級數是沒有意義的。

然而為了實際的需要,可以確立一些法則,對某些發散級數求它們的「和」,或者說某個發散級數在特定的極限過程中,逐漸逼近某個數。但是在實際的數學研究以及物理等其它學科的應用中,常常需要對發散級數進行運算,於是數學家們就給發散級數定義了各種不同的「和」,比如cesàro和,abel和,euler和等,使得對收斂級數求得的這些和仍然不變,而對某些發散級數,這種和仍然存在。

2樓:匿名使用者

就是看極限存不存在了。也就是說當n→∞時,能不能找到一個數,是式子減這個數,然後取絕對值後的值很小很小。

3樓:匿名使用者

判斷級數收斂及分散的方法有很多,第一個級數為交錯級數,可以由萊布尼茨判別法知為收斂,第二個級數,當n趨於無窮時,xn不趨於0,由級數收斂的必要條件可知該級數不收斂

如何判斷一個數列是發散還是收斂~要詳細點,容易懂點

4樓:匿名使用者

極限會求吧,如果數列項數n趨於無窮時,數列的極限==實數a,那麼這個數列就是收斂的;如果找不到實數a,這個數列就是發散的。

5樓:大孩子

看n趨向無窮bai

大時,xn是否趨向一個常du數,可是有zhi時xn比較

複雜,並不好觀dao察,加減的時候,專把高階

屬的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小來。

基本公式:

1.一般數列的通項an與前n項和sn的關係:an=sn-sn-1。

2.等差數列的通項公式:an=a1+(n-1)d      an=ak+(n-k)d     (其中a1為首項、ak為已知的第k項)  當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。

3.等差數列的前n項和公式:sn=an^2+bn     sn=na1+[n(n-1)]d/2   sn=(a1+an)n/2。

當d≠0時,sn是關於n的二次式且常數項為0;當d=0時(a1≠0),sn=na1是關於n的正比例式。

4.等比數列的通項公式: an= a1 qn-1    an= ak qn-k  (其中a1為首項、ak為已知的第k項,an≠0)。

5.等比數列的前n項和公式:當q=1時,sn=n a1     (是關於n的正比例式)。

判斷級數是收斂還是發散

6樓:彳亍雲啊

收斂的。利用比較審斂法,這個是<=1/4^n,而後面這個級數是收斂的。

如何判斷一個數列是發散還是收斂?

7樓:不是苦瓜是什麼

看n趨向無窮大時,xn是否趨向一個常數,即可以判斷收斂還是發散。

可是有時xn比較複雜,並不好觀察,加減的時候,把高階的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小。

收斂函式一定有界,但是有界函式不一定收斂,如f(x)在x=0處f(0)=2,在其他x處f(x)=1,那麼f(x)在x=0處就不是收斂的,那麼f(x)就不是收斂函式,但是f(x)是有界的,因為1≤f(x)≤2。

基本公式:

1、一般數列的通項an與前n項和sn的關係:an=sn-sn-1。

2、等差數列的通項公式:an=a1+(n-1)d      an=ak+(n-k)d     (其中a1為首項、ak為已知的第k項)  當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。

3、等差數列的前n項和公式:sn=an^2+bn     sn=na1+[n(n-1)]d/2   sn=(a1+an)n/2。

當d≠0時,sn是關於n的二次式且常數項為0;當d=0時(a1≠0),sn=na1是關於n的正比例式。

4、等比數列的通項公式: an= a1 qn-1    an= ak qn-k  (其中a1為首項、ak為已知的第k項,an≠0)。

5、等比數列的前n項和公式:當q=1時,sn=n a1     (是關於n的正比例式)。

8樓:angela韓雪倩

第一個其實就是正項的等比數列的和,公比小於1,是收斂的。

第二個項的極限是∞,必然不收斂。

拓展資料:

簡單的說

有極限(極限不為無窮)就是收斂,沒有極限(極限為無窮)就是發散。

例如:f(x)=1/x 當x趨於無窮是極限為0,所以收斂。

f(x)= x 當x趨於無窮是極限為無窮,即沒有極限,所以發散。

收斂數列與其子數列間的關係

子數列也是收斂數列且極限為a恆有|xn|若已知一個子數列發散,或有兩個子數列收斂於不同的極限值,可斷定原數列是發散的。

發散級數指不收斂的級數。一個數項級數如果不收斂,就稱為發散,此級數稱為發散級數。一個函式項級數如果在(各項的定義域內)某點不收斂,就稱在此點發散,此點稱為該級數的發散點。

按照通常級數收斂與發散的定義,發散級數是沒有意義的。

然而為了實際的需要,可以確立一些法則,對某些發散級數求它們的「和」,或者說某個發散級數在特定的極限過程中,逐漸逼近某個數。但是在實際的數學研究以及物理等其它學科的應用中,常常需要對發散級數進行運算,於是數學家們就給發散級數定義了各種不同的「和」,比如cesàro和,abel和,euler和等,使得對收斂級數求得的這些和仍然不變,而對某些發散級數,這種和仍然存在。

9樓:大孩子

看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複雜,並不好觀察,加減的時候,把高階的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小來。

基本公式:

1.一般數列的通項an與前n項和sn的關係:an=sn-sn-1。

2.等差數列的通項公式:an=a1+(n-1)d      an=ak+(n-k)d     (其中a1為首項、ak為已知的第k項)  當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。

3.等差數列的前n項和公式:sn=an^2+bn     sn=na1+[n(n-1)]d/2   sn=(a1+an)n/2。

當d≠0時,sn是關於n的二次式且常數項為0;當d=0時(a1≠0),sn=na1是關於n的正比例式。

4.等比數列的通項公式: an= a1 qn-1    an= ak qn-k  (其中a1為首項、ak為已知的第k項,an≠0)。

5.等比數列的前n項和公式:當q=1時,sn=n a1     (是關於n的正比例式)。

怎麼樣判斷數是收斂的還是發散的,麻煩說的通俗易懂,謝謝

第一個其實就是正項的等比數列的和,公比小於1,是收斂的。第二個項的極限是 必然不收斂。高數的收斂發散怎麼判斷,求通俗易懂的方法 收斂就是有極限 一個數 發散就是沒有極限吧 無窮大 我是這麼理解的。你好 江浙滬是包郵的哦 判斷一個級數是收斂還是發散的重要根據是什麼?您好,bai我看到您的問題很du久沒...

怎麼判斷冪級數是否收斂,怎麼判斷一個冪級數是否收斂

如果僅僅是知道在兩個點的收斂和發散是不能確定冪級數收斂半徑的內。比如某個在容0點處的冪級數在x 1收斂,在x 5發散,那麼它的收斂半徑可能是1到5之間的任何數。但是,如果知道的這兩個點關於點是對稱的,比如在0處的冪級數,在x 7處發散,而在 7處收斂,那麼冪級數收斂半徑就是7了 這兩點之差的一半 因...

交錯級數判斷斂散性時,需要判斷絕對收斂還是條件收斂嗎?還是隻

一般要看題目的要求。如果題目只是要求判斷是否收斂,那麼說出級數收斂還是發散就可以了。如果題目還要求在收斂的情況下,說明是條件收斂還是絕對收斂,那麼如果收斂就要繼續做下去。總之,都是看題目的要求。沒有什麼預設的規定。前2道題,判斷下列交錯級數的斂散性 後3道題,判斷下列級數哪些是絕對收斂,哪些是條件收...