求複變函式e z z 1 z 2 dz

2021-03-10 18:13:12 字數 1121 閱讀 3316

1樓:曉龍修理

|解:原式=e^62616964757a686964616fe59b9ee7ad9431333431373835z/(z-1)^3

= e^(w+1)/w^3

= e*e^w/w^3

= e*(1+w+w^2/2++...)/w^3

= e*(1/w^3 + 1/w^2 + 1/2w + ... )

所以∮|z|=3 ez次方/(z-1)3dz

= ∮|z|=3 [e*(1/w^3 + 1/w^2 + 1/2w + ... )]dz

= ∮|z|=3 [e/2w]dz

= ∮|z|=3 [e/2(z-1)]dz

= e/2*∮|z|=3 1/(z-1) d(z-1)

= e/2 * 2pi * i

= e * i *pi

性質:設a是一個複數集,如果對a中的任一複數z,通過一個確定的規則有一個或若干個複數w與之對應,就說在複數集a上定義了一個複變函式。

ƒ(z)是z通過規則ƒ而確定的複數。如果記z=x+iy,w=u+iv,那麼複變函式w=ƒ(z)可分解為w=u(x,y)+iv(x,y);所以一個複變函式w=ƒ(z)就對應著一對兩個實變數的實值函式。除非有特殊的說明,函式一般指單值函式,即對a中的每一z,有且僅有一個w與之對應。

設ƒ(z)是a上的複變函式,α是a中一點。如果對任一正數ε,都有正數δ,當z∈a且|z-α|<δ時,|ƒ(z)-ƒ(α)|<ε恆成立,則稱ƒ(z)在α處是連續的,如果在a上處處連續,則稱為a上的連續函式或連續對映。

設ƒ是緊集a上的連續函式,則對任一正數ε,必存在不依賴自變數z的正數δ,當z1,z2∈a且|z1-z2<δ時|ƒ(z1)-ƒ(z2)|<ε恆成立。這個性質稱為ƒ(z)在a上的一致連續性或均勻連續性。

2樓:匿名使用者

^1.1/2時為0;

2.3/2時,積分為

來[e^(3/2)/(3/2-2)]*2(pi)i;因為非奇源異函式可以提出來,

bai1/(z-1)為奇異函式。

du3.5/2時,通過zhipartial fraction,1/[(z-1)(z-2)]=1/(z-2)-1/(z-1);

之後,可得積dao分為[e^(5/2)-e^(3/2)]*2(pi)i.

複變函式計算積分12z1dz,其中c為z

這題也用不bai 了柯西積分公式 啊du,用柯西zhi積分公式需要能把被dao積函式化成一定的形式,回本題用和答柯西積分公式本質相同的留數定理計算。被積函式只要z i 2和z 1兩個一級極點,並且它們都在積分圓周 z 2內部,故需求出它們的留數。res f z i 2 1 i 2 1 res f z...

複變函式題 z 1 sin1 icos1化為三角形式 具體怎麼做呢

設tan cos1 1 sin1 du,zhi16 48 38 z dao 1 sin1 cos1 內1.9191z 1 sin1 cos1 cos isin z的三角形容式 1.9191 cos16 48 38 i sin16 48 38 複變函式 把1 1 z 2展成z的冪級數 因為f z 1 ...

求大神指教複變函式中求大神指教,複變函式中z14z1為什麼表示多連通區域的

先把複數不等式化為實數不等式 然後把不等式化為等式 再根據方程畫出曲線 從上面的不等式看到,這是一個代數多項式,它所代表的區域應該是連續的,可以直觀地判斷出來,它所代表的區域就是圓外區域。由於不等式不取等號,所以不包含圓周。也就是說,原來的不等式所代表的區域相當於在一張大平面上摳掉一個圓,那麼根據普...