計算二重積分D y 2 dxdy,其中D是曲線y x,xy 1及x 2圍成

2021-03-27 08:05:50 字數 3835 閱讀 7323

1樓:匿名使用者

解:原式=∫

<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx

=∫<1,2>(x²-1)dx

=2³/3-2-1/3+1

=4/3。

計算二重積分、∫∫[d](x/y^2)dxdy,其中d是曲線y=x,xy=1及x=2圍成

2樓:匿名使用者

解:畫出積分割槽域d如右圖,d可用不等式表示為:

(1/y)<=x<=y,1<=y<=2.

這是y-型區域,因此,有

標準答案,希望採納!!!

3樓:匿名使用者

1.,d由x=0,y=0與x^2+y^2=1,畫圖就看出來了

2.y=x與拋物線y=x^2 交點的時候兩個y相等,可以求出x(0,1)

3.2x-y+3=0,x+y-3=0 交點x相等,解出來y=3 所以 1《y《3

4樓:sylviac妹妹

解:1。原式=∫

<1,2>y²dy∫dx/x² (畫圖分析,約去)=∫<1,2>y²(y-1/y)dy

=∫<1,2>(y³-y)dy

=2^4/4-2²/2-1/4+1/2

=9/4;

2。原式=∫<1,2>x²dx∫<1,x>ydy=∫<1,2>x²(x²/2-1/2)dx=1/2∫<1,2>(x^4-x²)dx

=(32/5-8/3-1/5+1/3)/2=58/15;

3。原式=∫<-1,0>dx∫<-x-1,1+x>(x²+y²)dy+∫<0,1>dx∫(x²+y²)dy

=2/3∫<-1,0>(4x³+6x²+3x+1)dx+2/3∫<0,1>(1-3x+6x²-4x³)dx

=2(1+2+3/2+1+1-3/2+2-1)/3=4。

5樓:匿名使用者

^^)|∫∫(e^(y/x)dxdy

=∫[0,1/2] dx∫[x^2,x] (e^(y/x)dy=∫[0,1/2] dx

=∫[0,1/2] (xe-xe^x) dx=ex^2/2|[0,1/2] -∫[0,1/2] xe^xdx=e/8 -∫[0,1/2] xde^x

=e/8 - xe^x|[0,1/2]+∫[0,1/2] e^xdx=e/8-√e/2 +[√e -1]

=e/8 +√e/2 -1

6樓:又唱又跳

|極座標系 d:0≤θ≤π/2 , 0 ≤p≤2∫∫√(1+x²+y²)dxdy = ∫[0,π/2] dθ ∫[0,2] √(1+p²) p dp

= π/2 * (1/3) (1+p²)^(3/2) |[0,2]= (π/6) * (5√5 -1)

7樓:匿名使用者

解:原式=∫

<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx

=∫<1,2>(x²-1)dx

=2³/3-2-1/3+1

=4/3。

計算二重積分∫∫d(xsiny/y)dxdy,其中d是由曲線y=x和y=x^2圍成的平面 15

8樓:匿名使用者

解:先求曲線交點以確定積分割槽域的範圍:聯立y=x與y=x^2,解得交點為(0,0)與(1,1)

再觀察被積函式的形式確定二重積分分解的順序,因為siny/y的原函式不是初等函式,因此不能先對y積分,考慮先對x積分

在(0,0)與(1,1)之間,沿x軸先出現y=x,再出現y=x^2,且y>=0故有:

原式=∫(0→1)sin(y)/ydy∫(y→sqrt(y))xdx=∫(0→1)(1/2)*(y-y^2) *sin(y)/ydy

=(1/2)∫(0→1)(sin(y)-ysin(y))dy

=-(1/2)*cos(1)+(1/2)+(1/2)*cos(1)-(1/2)*sin(1)

=(1/2)-(1/2)*sin(1)

計算二重積分 ∫∫d x^2/y^2 dxdy,其中d為y=x,yx=1,x=2所圍成的區域

9樓:匿名使用者

d:y ≤ x、y ≥ 1/x、x ≤ 2∫∫ x²/y² dxdy

= ∫(1→2) dx ∫(1/x→x) x²/y² dy= ∫(1→2) x² * (- 1/y):(1/x→x) dx= ∫(1→2) x² * [(- 1/x) - (- x)] dx= ∫(1→2) x² * (x - 1/x) dx= ∫(1→2) (x³ - x) dx

= (1/4 * x⁴ - 1/2 * x²):(1→2)= (1/4 * 16 - 1/2 * 4) - (1/4 - 1/2)

= 9/4

計算二重積分?d|xy|dxdy,其中d是圓域x2+y2≤a2

10樓:drar_迪麗熱巴

解題過程如下圖:

二重積分意義

當被積函式大於零時,二重積分是柱體的體積。

當被積函式小於零時,二重積分是柱體體積負值。

幾何意義

在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。

11樓:隱沒洶

設d1是d在第一象限的部分,則d

=由於二重積分?

d|xy|dxdy的被積函式|xy|是關於x和y的偶函式,而區域d也是關於座標軸對稱的,∴?d

|xy|dxdy=4∫∫

d|xy|dxdy

=4∫π20

sinθcosθdθ∫a0

r?rdr

=a?[?1

4cos2θ]π2

0=a4

計算二重積分∫∫x^2/y^2dxdy,其中d是由曲線y=1/x,y=x,x=1,x=2所圍城的區域

12樓:匿名使用者

^說明:其中∫(x,1/x)表示x為上限,1/x為下限,由圖可觀察誰為上限,誰將做下限的。下面出現同類。

原式=∫x^2dx∫(x,1/x)1/y^2dy=∫x^2(-1/y|(x,1/x))dx=∫(2,1)x^3dx-∫(2,1)xdx

=(x^4/4-x^2/2)|(2,1) (1為下限,2為上限)=9/4

13樓:匿名使用者

解:原式=∫

<1,2>x²dx∫<1/x,x>dy/y²=∫<1,2>x²(x-1/x)dx

=∫<1,2>(x³-x)dx

=(x^4/4-x²/2)│

<1,2>

=4-2-1/4+1/2

=9/4。

計算二重積分∫∫(x^2/y^2)dxdy,其中d由曲線xy=2,y=x^2+1,x=2所圍成

14樓:

積分割槽域為x型:

1≤x≤2,(1/x)≤y≤x²

原式=∫

<1,2>dx∫<1/x,x²>x²/y²dy=∫<1,2>dx [x²*(-1/y)]|<1/x,x²>=∫<1,2>(x³-1)dx

=(1/4 x^4 -x)|<1,2>

=11/4

計算二重積分∫∫(x²/y²)dxdy,其中d是由xy=1,y=x,x=2所圍成的區域

15樓:零點零點

用極座標來做。具體如下

d就是半徑為a的圓的上半部分,用極座標表示就是0<θ

回<π,0<ρ被積

計算二重積分D y 2 x 2 dxdy,其中D為y x,yx 1,x 2所圍成的區域

方法如下圖所示,請認真檢視,祝學習愉快 計算二重積分 d x 2 y 2 dxdy,其中d為y x,yx 1,x 2所圍成的區域 d y x y 1 x x 2 x y dxdy 1 2 dx 1 x x x y dy 1 2 x 1 y 1 x x dx 1 2 x 1 x x dx 1 2 x ...

計算二重積分x2y2dxdy其中dx

化成極座標,x 2 y 2 2x,變成r 2cos 積分割槽域 0 r 2cos 2 2,區域以x軸為上下對稱,只求第一象限區域,再2倍即可,i 2 0,2 d 0,2cos r rdr 2 0,2 d r 3 3 0,2cos 2 3 0,2 8 cos 3 d 16 3 0,2 1 sin 2 ...

求 二重積分x y 2dxdy,其中積分割槽域D x

du x y 2dxdy x y 2xy dxdy x y dxdy 這裡由於函式2xy關於zhix為奇函式,區域d關於y軸對稱,所以 dao 2xydxdy 0 0,2 d 內 0,2 r rdr 2 r 4 4 0,2 8 這裡用了極座標容 計算二重積分 x y dxdy,其中d為x 2 y 2...