1樓:小茗姐姐
方法如下圖所示,請認真檢視,祝學習愉快:
計算二重積分 ∫∫d x^2/y^2 dxdy,其中d為y=x,yx=1,x=2所圍成的區域
2樓:匿名使用者
d:y ≤ x、y ≥ 1/x、x ≤ 2∫∫ x²/y² dxdy
= ∫(1→2) dx ∫(1/x→x) x²/y² dy= ∫(1→2) x² * (- 1/y):(1/x→x) dx= ∫(1→2) x² * [(- 1/x) - (- x)] dx= ∫(1→2) x² * (x - 1/x) dx= ∫(1→2) (x³ - x) dx
= (1/4 * x⁴ - 1/2 * x²):(1→2)= (1/4 * 16 - 1/2 * 4) - (1/4 - 1/2)
= 9/4
計算二重積分∫∫x^2/y^2dxdy,其中d是由曲線y=1/x,y=x,x=1,x=2所圍城的區域
3樓:匿名使用者
^說明:其中∫(x,1/x)表示x為上限,1/x為下限,由圖可觀察誰為上限,誰將做下限的。下面出現同類。
原式=∫x^2dx∫(x,1/x)1/y^2dy=∫x^2(-1/y|(x,1/x))dx=∫(2,1)x^3dx-∫(2,1)xdx
=(x^4/4-x^2/2)|(2,1) (1為下限,2為上限)=9/4
4樓:匿名使用者
解:原式=∫
<1,2>x²dx∫<1/x,x>dy/y²=∫<1,2>x²(x-1/x)dx
=∫<1,2>(x³-x)dx
=(x^4/4-x²/2)│
<1,2>
=4-2-1/4+1/2
=9/4。
計算二重積分、∫∫[d](x/y^2)dxdy,其中d是曲線y=x,xy=1及x=2圍成
5樓:匿名使用者
解:畫出積分割槽域d如右圖,d可用不等式表示為:
(1/y)<=x<=y,1<=y<=2.
這是y-型區域,因此,有
標準答案,希望採納!!!
6樓:匿名使用者
1.,d由x=0,y=0與x^2+y^2=1,畫圖就看出來了
2.y=x與拋物線y=x^2 交點的時候兩個y相等,可以求出x(0,1)
3.2x-y+3=0,x+y-3=0 交點x相等,解出來y=3 所以 1《y《3
7樓:sylviac妹妹
解:1。原式=∫
<1,2>y²dy∫dx/x² (畫圖分析,約去)=∫<1,2>y²(y-1/y)dy
=∫<1,2>(y³-y)dy
=2^4/4-2²/2-1/4+1/2
=9/4;
2。原式=∫<1,2>x²dx∫<1,x>ydy=∫<1,2>x²(x²/2-1/2)dx=1/2∫<1,2>(x^4-x²)dx
=(32/5-8/3-1/5+1/3)/2=58/15;
3。原式=∫<-1,0>dx∫<-x-1,1+x>(x²+y²)dy+∫<0,1>dx∫(x²+y²)dy
=2/3∫<-1,0>(4x³+6x²+3x+1)dx+2/3∫<0,1>(1-3x+6x²-4x³)dx
=2(1+2+3/2+1+1-3/2+2-1)/3=4。
8樓:匿名使用者
^^)|∫∫(e^(y/x)dxdy
=∫[0,1/2] dx∫[x^2,x] (e^(y/x)dy=∫[0,1/2] dx
=∫[0,1/2] (xe-xe^x) dx=ex^2/2|[0,1/2] -∫[0,1/2] xe^xdx=e/8 -∫[0,1/2] xde^x
=e/8 - xe^x|[0,1/2]+∫[0,1/2] e^xdx=e/8-√e/2 +[√e -1]
=e/8 +√e/2 -1
9樓:又唱又跳
|極座標系 d:0≤θ≤π/2 , 0 ≤p≤2∫∫√(1+x²+y²)dxdy = ∫[0,π/2] dθ ∫[0,2] √(1+p²) p dp
= π/2 * (1/3) (1+p²)^(3/2) |[0,2]= (π/6) * (5√5 -1)
10樓:匿名使用者
解:原式=∫
<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx
=∫<1,2>(x²-1)dx
=2³/3-2-1/3+1
=4/3。
計算二重積分∫∫(x+y)dxdy,其中d是由直線y=x,x=1所圍成的閉區間
11樓:醉夢微涼
答案為1/2。
具體解題方法如圖:
計算二重積分∫∫(x^2/y^2)dxdy,其中d由曲線xy=2,y=x^2+1,x=2所圍成
12樓:
積分割槽域為x型:
1≤x≤2,(1/x)≤y≤x²
原式=∫
<1,2>dx∫<1/x,x²>x²/y²dy=∫<1,2>dx [x²*(-1/y)]|<1/x,x²>=∫<1,2>(x³-1)dx
=(1/4 x^4 -x)|<1,2>
=11/4
計算二重積分D y 2 dxdy,其中D是曲線y x,xy 1及x 2圍成
解 原式 1,2 dx 1 x,x x y dy 1,2 x x 1 x dx 1,2 x 1 dx 2 3 2 1 3 1 4 3。計算二重積分 d x y 2 dxdy,其中d是曲線y x,xy 1及x 2圍成 解 畫出積分割槽域d如右圖,d可用不等式表示為 1 y x y,1 y 2.這是y ...
計算二重積分x2y2dxdy其中dx
化成極座標,x 2 y 2 2x,變成r 2cos 積分割槽域 0 r 2cos 2 2,區域以x軸為上下對稱,只求第一象限區域,再2倍即可,i 2 0,2 d 0,2cos r rdr 2 0,2 d r 3 3 0,2cos 2 3 0,2 8 cos 3 d 16 3 0,2 1 sin 2 ...
求二重積分1 x 2dxdy,其中D為x 2 y 2 1,y 0,y x所圍第一象限區域
這裡積分割槽域為單位圓在第一象限的八分之一圓部分 扇形 適合用極座標做 求一道二重積分 計算 1 x 2 y 2 dxdy,其中d是由圓周x 2 y 2 4及座標軸所圍成的在第一象限內 極座標系 d 0 2 0 p 2 1 x y dxdy 0,2 d 0,2 1 p p dp 2 1 3 1 p ...