線性代數 有一道求特徵值對應的特徵向量的題矩陣中都是實數然後我求的特徵向值對應的特徵向量和答案

2021-04-17 18:39:05 字數 6216 閱讀 1660

1樓:夢想隊員

可能會有不同解的情況出現。因為求特徵向量的過程實際上是求解方程組,解的形式不是唯一的,但是個數肯定是確定的。

線性代數問題,求矩陣的對角陣時為什麼要把特徵向量單位化呢?

2樓:是你找到了我

因為正交陣的每一列都肯定

是單位陣,所以需要單位化;如果不用正交陣作對角化過程,只用一般的可逆陣,就可以不單位化。

線性變換的特徵向量是指在變換下方向不變,或者簡單地乘以一個縮放因子的非零向量。特徵向量對應的特徵值是它所乘的那個縮放因子。特徵空間就是由所有有著相同特徵值的特徵向量組成的空間,還包括零向量,但要注意零向量本身不是特徵向量 。

線性變換的主特徵向量是最大特徵值對應的特徵向量。特徵值的幾何重次是相應特徵空間的維數。有限維向量空間上的一個線性變換的譜是其所有特徵值的集合。

3樓:demon陌

因為p是正交矩陣,正交矩陣每一行(或列)都是單位向量,題中a恰有3個不同的特徵值,而不同特徵值對應特徵向量必正交,所以就不用正交化,而是直接單位化。

若λ0是a的特徵值,且是特徵多項式的k重根,因為a可對角化,所以特徵方程│a-λ0│=0的基礎解系必包含k個解向量,則這k這個特徵向量必須施密特正交化然後再單位化。

有定理:矩陣a可對角化的充分必要條件是a的每個特徵值的代數重數等於其幾何重數,即a有完全特徵向量系。

只有對角線上有非0元素的矩陣稱為對角矩陣,或說若一個方陣除了主對角線上的元素外,其餘元素都等於零。

4樓:匿名使用者

要將每個特徵向量單位化的原因是正交矩陣才能得到p^(-1)ap=p^tap=λ,既p的逆矩陣等於p的轉置矩陣,否則只能使用p^(-1)ap=λ.顯然,轉置矩陣要比逆矩陣好求多了.

線性代數,求特徵值和特徵向量

5樓:dear豆小姐

||特徵值  λ = -2, 3, 3,特徵向量

: (1    0    -1)^t、(3     0     2)^t。

解:|λe-a| =

|λ-1       -1          -3|

| 0         λ-3         0|

|-2         -2           λ|

|λe-a| = (λ-3)*

|λ-1        -3|

|-2           λ|

|λe-a| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2

特徵值  λ = -2, 3, 3

對於 λ = -2, λe-a =

[-3      -1      -3]

[ 0      -5       0]

[-2      -2      -2]

行初等變換為

[ 1       1         1]

[ 0       1         0]

[ 0       2         0]

行初等變換為

[ 1       0         1]

[ 0       1         0]

[ 0       0         0]

得特徵向量 (1    0    -1)^t。

對於重特徵值 λ = 3, λe-a =

[ 2      -1      -3]

[ 0       0       0]

[-2      -2      3]

行初等變換為

[ 2      -1      -3]

[ 0      -3       0]

[ 0       0       0]

行初等變換為

[ 2       0      -3]

[ 0       1       0]

[ 0       0       0]

得特徵向量 (3     0     2)^t。

答:特徵值  λ = -2, 3, 3,特徵向量: (1    0    -1)^t、(3     0     2)^t。

擴充套件資料

特徵值是線性代數中的一個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用

設 a 是n階方陣,如果存在數m和非零n維列向量 x,使得 ax=mx 成立,則稱 m 是a的一個特徵值(characteristic value)或本徵值(eigenvalue)。

非零n維列向量x稱為矩陣a的屬於(對應於)特徵值m的特徵向量或本徵向量,簡稱a的特徵向量或a的本徵向量。

矩陣的特徵向量是矩陣理論上的重要概念之一,它有著廣泛的應用。數學上,線性變換的特徵向量(本徵向量)是一個非簡併的向量,其方向在該變換下不變。該向量在此變換下縮放的比例稱為其特徵值(本徵值)。

6樓:匿名使用者

|a-λ

e| =

1-λ 2 3

2 1-λ 3

3 3 6-λ

r1-r2

-1-λ 1+λ 0

2 1-λ 3

3 3 6-λ

c2+c1

-1-λ 0 0

2 3-λ 3

3 6 6-λ

= (-1-λ)[(3-λ)(6-λ)-18]= (-1-λ)[λ^2-9λ]

= λ(9-λ)(1+λ)

所以a的特徵值為 0, 9, -1

ax = 0 的基礎解係為: a1 = (1,1,-1)'

所以,a的屬於特徵值0的全部特徵向量為: c1(1,1,-1)', c1為非零常數.

(a-9e)x = 0 的基礎解係為: a2 = (1,1,2)'

所以,a的屬於特徵值9的全部特徵向量為: c2(1,1,2)', c2為非零常數.

(a+e)x = 0 的基礎解係為: a3 = (1,-1,0)'

所以,a的屬於特徵值-1的全部特徵向量為: c3(1,-1,0)', c3為非零常數.

7樓:匿名使用者

你好,滿意請採納哦!

|a-λe|=

2-λ 3 2

1 8-λ 2

-2 -14 -3-λ

= -(λ-1)(λ-3)^2=0

解得特徵值為1,3,3

1對應的特徵向量:

(a-e)x=0

係數矩陣:

1 3 2

1 7 2

-2 -14 -4

初等行變換結果是:

1 0 2

0 1 0

0 0 0

所以特徵向量是[-2 0 1]^t

3對應的特徵向量:

(a-3e)x=0

係數矩陣:

-1 3 2

1 5 2

-2 -14 -6

初等行變換結果是:

1 1 0

0 2 1

0 0 0

所以特徵向量是[1 -1 2]^t

8樓:

一個基本結論:

矩陣所有特徵值的和為主對角線上元素的和。

所以,兩個特徵值之和為

1+3=4

9樓:匿名使用者

λ||λ|λe-a| =

|λ-1 -1 -3|| 0 λ-3 0||-2 -2 λ||λe-a| = (λ-3)*

|λ-1 -3|

|-2 λ|

|λe-a| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2

特徵值 λ = -2, 3, 3

對於 λ = -2, λe-a =

[-3 -1 -3]

[ 0 -5 0]

[-2 -2 -2]

行初等變換為

[ 1 1 1][ 0 1 0][ 0 2 0]行初等變換為

[ 1 0 1][ 0 1 0][ 0 0 0]得特徵向量 (1 0 -1)^t對於重特徵值 λ = 3, λe-a =

[ 2 -1 -3]

[ 0 0 0]

[-2 -2 3]

行初等變換為

[ 2 -1 -3]

[ 0 -3 0]

[ 0 0 0]

行初等變換為

[ 2 0 -3]

[ 0 1 0]

[ 0 0 0]

得特徵向量 (3 0 2)^t.

10樓:豆賢靜

題目給的條件是a的秩為2,所以在特徵值為-2的時候,最多隻有兩個特徵向量。

11樓:小樂笑了

|λi-a| =

λ-1    -1    -3

0    λ-3    0

-2    -2    λ

= (λ-1)(λ-3)λ-2×3×(λ-3) = (λ-3)(λ+2)(λ-3) = 0

解得λ=-2,3(兩重)

12樓:匿名使用者

求 λ-2 2 0

2 λ-1 2

0 2 λ

行列式值為0的解。

得特徵值為 -2,1,4。

對λ^3-3λ^2-6λ+8進行因式分解。

一般求特徵值時的因式分解步驟都不難, 上式容易看出1是它的一個零點,提取出λ-1,得到

λ^3-3λ^2-6λ+8=(λ-1)(λ^2-2λ-8)

13樓:匿名使用者

一個線性方程組的基礎解系是這樣的一個解向量組:

14樓:徐臨祥

1.首先讓我們來了解一下特徵值和特徵向量的定義,如下:

2.特徵子空間基本定義,如下:

3.特徵多項式的定義,如下:

15樓:蒯懿靖迎夏

此題中,由於是實對稱矩陣,特徵向量互相垂直,所以η·η1=0,所以

x2+x3=0。在滿足該條件的基礎上任取互相垂直的向量選作η2、η3(只要滿足該條件,就屬於

λ=1對應特徵向量的解空間),即可。

對矩陣a,方程

ax=λx(x待求向量,λ待求標量),的解x稱為a的特徵向量,

λ為對應的特徵值,特徵值特徵向量問題是線性代數學習、研究的一個重要模組。

一般求解辦法:

第一步,求解方程:det(a-λe)=0

得特徵值

λ第二步,求解方程:(a-λe)x=0

得對應特徵向量

x特徵值特徵向量問題的應用比較廣泛:

線性代數領域——化簡矩陣(即矩陣對角化、二次型標準化等),計算矩陣級數

高等數學領域——解線性常係數微分方程組、判斷非線性微分方程組在奇點處的穩定性

物理——矩陣量子力學

……以上僅僅是筆者接觸到的一些應用。

16樓:洛德業劇溫

線性代數是數學的一個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的一個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。

由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

特徵值是線性代數中的一個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用。

數學上,線性變換的特徵向量(本徵向量)是一個非退化的向量,其方向在該變換下不變。該向量在此變換下縮放的比例稱為其特徵值(本徵值)。一個線性變換通常可以由其特徵值和特徵向量完全描述。

特徵空間是相同特徵值的特徵向量的集合。

設a為n階矩陣,根據關係式ax=λx,可寫出(λe-a)x=0,繼而寫出特徵多項式|λe-a|=0,可求出矩陣a有n個特徵值(包括重特徵值)。將求出的特徵值λi代入原特徵多項式,求解方程(λie-a)x=0,所求解向量x就是對應的特徵值λi的特徵向量。

線性代數求特徵值,為什麼把A的特徵值直接代入式子,就得到B的特徵值了?這是什麼公式嗎

第一步 假如 為矩陣a的特徵值,則有以下性質。a e,a 2 2e a 1 版2 3 第二步 求行權列式b b a 2 a e 2 1 e b 2 2 2 1 2 2 2 1 1 2 1 1 3 7 1 21 很容bai易證明的啊。ax dux那麼a x a ax zhi a x xbx a x a...

線性代數求特徵值與特徵向量題,若特徵值是四重根,是不是就應該寫出無關向量組成的基礎解系

多重根未必一定對應相應數量的不相關特徵向量的。例如你這四重根,不一定有四個不相關的特徵向量與之對應。矩陣能否對角化,關鍵的也就在這些多重根是否有對應數量的特徵向量與之對應,如果不足,則不能對角化。學習高等代數需不需要有高等數學為基礎?高等代數和高等數學之間沒有直接的關係。高等代數是數學專業的必修課,...

求一道線性代數的具體過程,求一道線性代數的具體過程

第 2 小題就是一個副對角線的行列式啊,求行列式的值直接把副對角線上的數字相內乘在加上一個符號容 位,符號位是由列標排列的逆序數決定的。這裡求符號的方法為 根據行列式的定義,次對角線上元素的乘積的符號由列標排列的逆序數決定列標的排列是 n n 1 321,其逆序數為 n 1 n 2 2 1 n n ...