c向量等於a向量差乘b向量 向量積 ,b向量等於ac向量的向

2021-04-17 22:25:00 字數 1908 閱讀 3949

1樓:解愁腹

解:向量

c=向量a×向量b

兩邊點乘b向量(數量積) 得向量回b向量c=0向量b=向量a×向答量c 向量a=向量b×向量c同理 可知三個向量兩兩垂直

模c=模a×模b 模a=模c×模b 模b=模a×模c故模a=模b=模c=1

∵三個向量兩兩垂直,可放在直角座標系中

設向量a=(1,0,0)向量b=(0,1,0)向量c=(0,0,1)三個向量相加=(1,1,1)

模=根號3.

向量相乘的模等於什麼? 比如向量a乘向量b的模=?

2樓:angela韓雪倩

||如果是數量積 a·b=|a||b|cosθ 它是一個長度,也就是

數。而|a·b|也求的就是a·b的長度等於上面的。

如果是向量積 |a×b|是一個向量。設那個向量是c,這裡有∣a×b∣=|a|·|b|·sinθ ;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。

方向:a向量與b向量的向量積的方向與這兩個向量所在平面垂直,且遵守右手定則。(一個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:

若座標系是滿足右手定則的,當右手的四指從a以不超過180度的轉角轉向b時,豎起的大拇指指向是c的方向。)

也可以這樣定義(等效):

向量積|c|=|a×b|=|a||b|sin

即c的長度在數值上等於以a,b,夾角為θ組成的平行四邊形的面積。

而c的方向垂直於a與b所決定的平面,c的指向按右手定則從a轉向b來確定。

*運算結果c是一個偽向量。這是因為在不同的座標系中c可能不同。

擴充套件資料:

為了更好地推導,我們需要加入三個軸對齊的單位向量i,j,k。

i,j,k滿足以下特點:

i=jxk;j=kxi;k=ixj;

kxj=–i;ixk=–j;jxi=–k;

ixi=jxj=kxk=0;(0是指0向量)

由此可知,i,j,k是三個相互垂直的向量。它們剛好可以構成一個座標系。

這三個向量的特例就是i=(1,0,0)j=(0,1,0)k=(0,0,1)。

對於處於i,j,k構成的座標系中的向量u,v我們可以如下表示:

u=xu*i+yu*j+zu*k;

v=xv*i+yv*j+zv*k;

那麼uxv=(xu*i+yu*j+zu*k)x(xv*i+yv*j+zv*k)

=xu*xv*(ixi)+xu*yv*(ixj)+xu*zv*(ixk)+yu*xv*(jxi)+yu*yv*(jxj)+yu*zv*(jxk)+zu*xv*(kxi)+zu*yv*(kxj)+zu*zv*(kxk)

由於上面的i,j,k三個向量的特點,所以,最後的結果可以簡化為

uxv=(yu*zv–zu*yv)*i+(zu*xv–xu*zv)*j+(xu*yv–yu*xv)*k。

3樓:酒劍風流

向量點積記為:a·b=|a|*|b|*cosα夾角

a·|b|=|b|a即b模倍的向量a

|a|*|b|=模相乘的數字積。

4樓:匿名使用者

你問的是

數量積還是向量積?

如果是數量積 a·b=|a||b|cosθ 它是一個長度,也就是數。

而|a·b|也求的就是a·b的長度 等於上面的如果是向量積 |a×b|是一個向量 設那個向量是c,這裡有∣a×b∣=|a|·|b|·sinθ ;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系

5樓:羊歡草長

你說的應該是向量積,兩個向量的向量積是一個向量,這個向量的模等於a的模乘以b的模,再乘以sinθ。

還有一種是兩個向量的數量積,結果是一個數,這個數等於a的模乘以b的模,再乘以cosθ。

b向量點乘c向量 乘a向量 c向量點乘a向量 乘b向量與c向量垂直是真命題麼求過程

b.c a c.a b c b.c a.c c.a b.c 0 b.c a c.a b 垂直c b向量 點乘c向量 乘a向量 c向量點乘a向量 乘b向量與內c向量垂直是真命題容 a向量叉乘b向量 點乘c向量為什麼等於 b向量叉乘c向量 a向量點乘 混合積具有輪換對稱性 a,b,c b,c,a c,a...

向量a點乘向量b向量a點乘向量c,向量b與向量c相等嗎

a b a c 不一定的,如果a是零向量的話,就不一定,如果不是零向量,那是相等的 不e.g a 0,1 b 2,1 c 3,1 a.b 1 a.c 不一定相等 向量a點乘向量b a的模乘b的模乘cos a與b的夾角 向量a點乘向量c a的模乘c的模乘cos a與c的夾角 由於a與b的夾角和a與c的...

已知向量a12向量b24向量c

1 設c x,y 已知a b 1,2 a b c x 2y 2.5 記為1式 有c的模為根號5可得x 2 y 2 5記為2式,由1,2式得x 根號3 0.5 y 2 根號3 2 或 x 根號3 0.5 y 2 根號3 2 由夾角公式得cos 0.5 則向量a,c的夾角為120度 2 p1p2 2si...