設為上半球面x 2 y 2 z 2 1 z0 則對面積的曲面積分ds

2021-04-18 03:07:10 字數 1230 閱讀 1120

1樓:匿名使用者

同學,這個被積來

函式為1呀,

那麼結源果就是相當於求上半球面的面積了。

球體的面積公式是什麼?

是4π*r的平方。

只有上半球面,而半徑r=1,於是結果是2π了。

你用1l的方法得出的結果也是一樣的,不過就會繁雜很多!

要理解曲面積分的本質哪,不能見題目就套公式!@

2樓:麼辛麼

先化成∫∫(x^2+y^2)/(1-x^2-y^2)

就把他投影到xoy平面上在利用極座標運算

高數曲面積分 ,設∑是球面x^2+y^2+z^2=a^2,則曲面積分(x+y+z)^2ds=?

3樓:夢色十年

4πa^4。

原式=∫∫

(x²+y²+z²+2xy+2yz+2xz)ds=∫∫(x²+y²+z²)ds+∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds

=∫∫a ²ds +0+0+0

=a² •4πa²

=4πa^4

注:1、∫∫(x²+y²+z²)ds=∫∫a ²ds (利用曲面積分可將曲面方程代入)

2、∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds=0+0+0 (利用曲面積分的對稱性)

4樓:匿名使用者

^高數曲面積分 ,設∑是球面x^2+y^2+z^2=a^2,則曲面積分(x+y+z)^2ds=?

原式=∫∫(x²+y²+z²+2xy+2yz+2xz)ds=∫∫(x²+y²+z²)ds+∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds

=∫∫a ²ds +0+0+0

=a² •4πa²

=4πa^4

注:1、∫∫(x²+y²+z²)ds=∫∫a ²ds (利用曲面積分可將曲面方程代入)

2、∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds=0+0+0 (利用曲面積分的對稱性)

求大神啊!!!!!!高等數學問題:設∑為球面x^2+y^2+z^2=1,則對面積的曲面積分∫∫(x^2+y^2+z^2)ds=?

5樓:匿名使用者

。。。樓主你想複雜了吧。

在球面上有

1 = x^2+y^2+z^2

因而積分項就是1

積分結果就是球面面積。4*pi

4*3.141592653…

求錐面zx 2 y 2與半球面z1 x

兩個辦法 一個是用積分,一個是用立體角 用積分 用球面座標,設半徑r與z軸夾角為 r在xoy平面上投影與x軸夾角為 則積分割槽域為 0 r 1,0 4,0 2 兩曲面所圍成立體體積為 v dv dxdydz r sin drd d 0,1 r dr 0,4 sin d 0,2 d 1 3 0,4 c...

高等數學題設為球體x2y2z21,fx,y

積分割槽域關復於xz平面對稱 制被積函式f x,y,z x bai2yzf x,y 2,z 3 關於duxz平面奇對zhi稱,即 f x,y,z x 2yzf x,y 2,z 3 f x,y,z 因此由對稱性,積分值是dao0。高數曲面積分 設 是球面x 2 y 2 z 2 a 2,則曲面積分 x ...

3x 2y 2z 3 2x 4y 3z 3 5x 2y 3z 12三元一次方程組

3x 2y 2z 3.2x 4y 3z 3.5x 2y 3z 12.解 得 8x z 9.2 得 4x 7z 3.由 得 z 8x 9 把 代入 得 x 1把x 1代入 得 z 1把x 1 z 1代入 得 y 2即 方程組的解是 x 1 y 2 z 12x 3y 2z 10.3x 2y 2z 1 2...