使log2 x x 1成立的x取值範圍是

2025-01-05 18:20:13 字數 2485 閱讀 4820

1樓:我不是他舅

定義域。x>0,x<0

log2(-x)-1,f(x)f(-1)

而g(x)=2^(x+1)是增函式,所以x>-1,g(x)>g(-1),x<-1,g(x)-1,f(-x)f(-1)=g(-1)>g(-1)

即只有x>-1時-x<2^(x+1)成立。

所以-1

2樓:網友

log2(-x)的影象和x+ 1的影象畫出來。

然後看《成立的範圍即可。

3樓:小剛

答案應該不對吧,應該只需要x<0就行了。

4樓:睢雪章巳

分別畫y=log2x和y=-x+1影象可看出兩影象交於(1,0)點,當x<1時-x+1>log2x,又因為log2x,所以x定義域為(0,+無窮),綜上,當0<x<1時,log2x<-x+1

5樓:奇愛景說春

x≤4,t=log2x,-2≤t≤2;

令t=log2x(-2≤t≤2),則y=t2+3t+2=(t+故當t=-

即log2x=-

x=2?時,函式f(x)取得最小值為-

當t=2,log2x=2,即x=4時,函式f(x)取得最大值為12.

若log (x-2)≥0,則x的範圍是     .

6樓:博林華製造

分析:由對數不等式可得可得 0<x-2≤1,解不等式求得x的範圍.

由log(x-2)≥0=,可得 0<x-2≤1,解悉敏亮拿虛得 2<x≤3,故答案為 (2,3].睜寬。

點評:本題主要考查對數函式的定義域、對數不等式的解法,屬於基礎題.

若sinθ=1-log 2 x,則x的取值範圍是______.

7樓:華源網路

sinθ=1-log2

x∈[-1,1],∴0≤log2

x≤2,求蘆畝棚耐清得 1≤x≤4,故答案陪則為:[1,4].

若log1/2(2x-1)>log1/2(x+3),求x的取值範圍

8樓:

摘要。親親,因為0<1/2<1,所以log1/2x是減函式。

若log1/2(2x-1)>log1/2(x+3),求x的取值範圍。

親親,因為0<1/2<1,所以log1/2x是減函式。

log1/2(2x-1)>log1/2(x+3)所以,2x-1log1/2(2x-1)>log1/2(x+3)所以,2x-1親親 所以,若log1/2(2x-1)>log1/2(x+3), x的取值範圍x<4<>

親親,這道題主要考察函式單調性的應用哦<>

證明:log以2為底x小於x,即log2 (x) < x,對於x>0成立

9樓:遊戲解說

令y=x-log2 (x)

y'=1-1/xln2=(xln2-1)/xln2當x>1/ln2 時 y'>0 y在區間(1/ln2,正無窮 )上單調遞增。

當00所以在區間(0,正無窮 )上,恆有y=x-log2 (x)>0即log2 (x) x,對於x>0恆成立。

滿足logx2/3<1 的x 的取值範圍是....要怎麼求呢

10樓:媯靜曼陳瀾

(1)由已知可得。

2x≤256=28

log2x≥log2

2,解得。2≤x≤8,故x的範圍為[

2)函式f(x)=log2(x2

log 2(

x2)=(log2x-1)(log2x

2)=(log2x-1)(log2x-2).(3)∵x的範圍為[

2,8],log2x∈[12

3],再利用二次函式的性質可得,當log2x=32時,函式f(x)取得最小值為-14

當log2x=3時,函式f(x)取得最大值為2.

11樓:孛白容爾涵

利用換底公式得。

lg(2/3)/lgx<1

因為x>0且x不等於1,故lgx>lg(2/3)

所以x的取值範圍是x>2/3且x不等於1

使log2(-x)<x+1成立的x的取值範圍為?

12樓:網友

x=-1時。

log2(1)=0

x+1=-1+1=0

根據影象。x>1

如果你認可我的,請點選「耐晌為滿意昌廳鋒答案」,祝學習進伏敗步!

使log2x<-x+1成立的x的取值範圍是

13樓:網友

分別畫y=log2x和y=-x+1影象可看出兩影象交於(1,0)點,當x<1時-x+1>log2x,又因為log2x,所以x定義域為(0,+無窮),綜上,當0<x<1時,log2x<-x+1

證明當x001時,不等式xx1成立

當x 0,0 1時,不等式x x 1 專成立 令f x x x 1 x x 1 f x x 1 x 1 1 0 屬 1 1 1 0 0 x 1時,x 1 1,f x x 1 1 0,f x 單調增 x 1時,x 1 1,f x x 1 1 0,f x 單調減 當x 1時有極大值f 1 x 1 1 1...

x 2 x 1m 2x 2 mx,對任意x R成立,求m的範圍

x x 10,若m 1 0即m 1或m 1,當m 1時,m 1 x m 1 x 1 2x 1,顯然對任意x r,2x 1 0不能成立。當m 1時,m 1 x m 1 x 1 1 0,對任意x r都成立。所以m可以取 1.若m 1 0,因為不等式對任意x r成立,則關於x的二次函式y m 1 x m ...

方程(2x 1)2 (1 3x)2 5(1 x)(x 1)的解是

2x 1 1 3x 2x 1 1 3x 5 1 x2 x 5x 2 5 5x2,5x2 2x 5 5x2,所以x 52 故答案為 x 52 方程 2x 1 的2次方 1 3x 的2次方 5 1 x x 1 的解是?解 2x 1 1 3x 5 1 x x 1 4x 4x 1 1 6x 9x 5 x 1...