極限存在乘以無窮大等於什麼,極限存在乘以無窮大等於什麼

2021-03-03 21:43:06 字數 3964 閱讀 4753

1樓:匿名使用者

同階無窮小mx^k/nx^k則a=m/n

低階無窮小則a=m/nx^k,常數/0=∞

2樓:啊從科來

要看常數是正數、負數還是0,如果是0乘以無窮大就等於0,如果是正數乘以正無窮大還得正無窮大,如果是負數乘以正無窮大就得負無窮大.正數乘以負無窮大得負無窮大得負無窮大,負數乘以負無窮大則得正無窮大.

極限為0乘以極限為無窮大等於幾

3樓:不是苦瓜是什麼

常數0乘以無復窮大到是不是0取決於零制

的性質。

1、如果0是一個確定的數,根據0的性質,無論乘以幾都是0。

2、「0」也可以表示無窮小。

因為0是最小的(即階數最高)無窮小,應該說無窮小乘以不確定數(無窮數)不確定,因為不確定數(無窮數)是某值除以無窮小。

例如:記某一無窮小為dx,則a/dx為某一無窮大。於是dx乘以a/dx為a,a不一定是零;無窮小乘以無窮大自然不等於零。

無窮小乘以無窮大數等於多少?

4樓:小小芝麻大大夢

無窮小+無窮大

仍抄是無窮大,無窮小襲乘以無窮大沒有意義。

正無窮大+正無窮大 = 正無窮大;負無窮大+負無窮大 = 負無窮大;正無窮大+負無窮大沒有意義(出現的話要轉換成有意義的形態才能求極限)。

無窮大乘以無窮大仍然是無窮大;無窮小乘以無窮小仍然是無窮小;無窮大和無窮小不是有限的常量,不能完全遵守常量的運演算法則。

5樓:匿名使用者

1.「無窮

bai小乘以無窮大」這個是一du個不定型zhi,可能等於一dao個常數,可能版等於無窮大,可能等於無窮小權,不能判定,比如(1/x)*x=1(x趨向於無窮大),(1/x2)*x=無窮小(x趨向於無窮小),(1/x)*x2=無窮大(x趨向於無窮大)

2.「正無窮大+負無窮大」這個也是一個不定型,可能等於0,可能等於正無窮大,可能等於負無窮大,不能判定,比如x+(-x)=0(x趨向於正無窮大),x+(-x2)=負無窮大(x趨向於正無窮大),x2+(-x)=正無窮大(x趨向於正無窮大)

6樓:匿名使用者

無窮小+無窮大 仍是無bai窮大

無窮小du乘以無窮大 沒有意義zhi

(如果有式子會出現無dao窮小乘以無專窮大的形式,不能直接求極屬限,必須要先化成有意義的形式

比如 1/x * x (x→∞),要先化成有意義的形式, 1/x * x = 1 。之後才行,但已經不是無窮小乘以無窮大的形式了,無窮小乘以無窮大的問題就不存在了。)

正無窮大+正無窮大 = 正無窮大

負無窮大+負無窮大 = 負無窮大

正無窮大+負無窮大 沒有意義(出現的話要轉換成有意義的形態才能求極限)

無窮大乘以無窮大仍然是無窮大

無窮小乘以無窮小仍然是無窮小

無窮大和無窮小不是有限的常量,不能完全遵守常量的運演算法則

7樓:元謀也瘋狂

定義最重要,什麼copy是無窮小?什麼是無窮大?相信樓主不甚瞭解。

無窮小是個簡稱,全稱是函式在x趨向於某個數或x趨向於正負無窮時,極限為0。無窮大類似。所以無窮小實質上是 函式加極限 的形式。

比如說f(x)=x這個函式,當x->0時才能稱的上是無窮小。如果籠統的說f(x)=x是無窮小則是錯的。再來說無窮小或者無窮大的數**算:

第一個必要條件是兩個函式的自變數必須要趨於同一個過程才能運算。所以無窮小乘以無窮大寫成數學式就是f(x)x*g(x)在相應的使他們倆成為無窮小和無窮大的過程中,極限存不存在的問題。實際上就是求極限。

明白了否?

0乘以無窮大等於多少?

8樓:我是一個麻瓜啊

0乘以無窮大結果不確定。

分析過程如下:

0是一個確定的數,無論乘以幾都是0。

「0」也可以表示無窮小,它乘以無窮大要分類討論。

0是無窮小的極限,顯然0和無窮小不是一回事。

9樓:您輸入了違法字

等於0。

0乘任何實數都等於0,0除以任何非零實數都等於0;任何實數加上或減去0等於其本身。

數學性質

1、0是最小的自然數。

2、0能被任何非零整數整除。

3、0不是奇數,而是偶數(一個非正非負的特殊偶數)。

4、0不是質數,也不是合數

5、0在多位數中起佔位作用,如108中的0表示十位上沒有,切不可寫作18。

6、0不可作為多位數的最高位。不過有些編號中需要前面用0補全位數。

7、0既不是正數也不是負數,而是正數和負數的分界點。當某個數x大於0(即x>0)時,稱為正數;反之,當x小於0(即x<0)時,稱為負數;而這個數x等於0時,這個數就是0。

擴充套件資料:

自然數的問題

從歷史上看,各國對於0是不是自然數歷來有兩種規定:一種規定0是自然數,另一種規定0不是自然數。

中國的中小學教材原先規定自然數集不包括0。但中國之外的數學界,大部分都是規定0是自然數,為了國際交流的方便,《國家標準》中規定,自然數集包括0。

因此,在我們新出版的教材中,按照《國家標準》進行了這樣的處理,自然數集合先現代稱為正整數集。同時,我們也按照國家標準的規定規範使用了一些數學符號的表示方法。

從使用上看,規定自然數集合是否包括0並無太大影響。作為序數,從0開始和從1開始是一樣的;以前我們所說的n∈n,現在只要說n是正整數(n∈n+)就可以了。

10樓:匿名使用者

0是一個確定的數,無論乘以幾都是0。

「0」也可以表示無窮小,它乘以無窮大要分類討論。

0是無窮小的極限,顯然0和無窮小不是一回事

11樓:月似當時

0乘以無窮大等於0,0乘任何數都等於0。

1、0是最小的自然數。

2、0能被任何非零整數整除。

3、0不是奇數,而是偶數(一個非正非負的特殊偶數)。

4、0不是質數,也不是合數。

5、0在多位數中起佔位作用,如108中的0表示十位上沒有,切不可寫作18。

6、0不可作為多位數的最高位。不過有些編號中需要前面用0補全位數。

7、0既不是正數也不是負數,而是正數和負數的分界點。當某個數x大於0(即x>0)時,稱為正數;反之,當x小於0(即x<0)時,稱為負數;而這個數x等於0時,這個數就是0。

8、0是介於-1和1之間的整數。

9、0是最小的完全平方數。

10、0的相反數是0,即,-0=0。

擴充套件資料

0是極為重要的數字,關於0這個數字概念在其它地區很早就有。公元前2023年,巴比倫人就已經懂得使用零來避免混淆。古埃及早在公元前2千年就有人在記帳時用特別符號來記載零。

瑪雅文明最早發明特別字型的0。瑪雅數字中0以貝殼模樣的象形符號代表。

中國古代的籌算數碼中沒有「零」,遇到「零」就空位。比如「6708」就可以表示為「┴ ╥ 」。數字中沒有「零」,是很容易發生錯誤的。

所以後來有人把銅錢擺在空位上,以免弄錯,這或許與「零」的出現有關。

但在我國古代文字中,中文的「零」字出現很早。不過那時它不表示「空無所有」,而只表示「零碎」、「不多」的意思。如「零頭」、「零星」、「零丁」。

「一百零五」的意思是:在一百之外,還有一個零頭五。但中國古代並沒有0這個字型,只有中文的字型零來表示。

隨著阿拉數字的引進。「105」恰恰讀作「一百零五」,「零」字與「0」恰好對應,「零」也就具有了「0」的含義。0在我國古代叫做金元數字。

12樓:

在實際中,0*∞沒有意義,跟0/0一樣

在計算機語言程式設計中,比如用matlab,他是nan,(not a number),不是一個數,而是一個符號

13樓:匿名使用者

0乘以任何數都等於0

14樓:匿名使用者

0乘以任何數不是0的數都得0

lim趨向於無窮大cos的極限存在嗎

極限不存在。解題思路 cosx是周期函式,它的取值範圍位於 1到1之間版,當x 0,2 2n 達到權最大值1,當x 3 2n 1 達到最小值 1,所以它的最大值為2,最小值為0,不會有極限只有最大值最小值。x 無窮大,它地值在 1,1 內不斷地出現,它地趨勢時不確定地,沒有極限。極限的求法有很多種 ...

高數裡面極限無窮大與不存在是什麼關係

答 1 無窮大,即 表示的是一種趨近的過程,不是一個確定的值,它是數學變數的一種性質描述,不能直接運算,也不能規定範圍,因此,都是不能確定的,也是沒有意義的。2 極限是也是一種變數的性質描述,但是在數學中,極限是有界的,是一個可以確定表述的有界值,從高斯極限存在定理開始,目前數學中已經明確的定義了極...

求極限n趨於無窮大,lim0,1xndx

lim n du0,1 x ndx 1 x n根據積zhi 分中值定理,存在 dao一個 0,1 內使得 0,1 x ndx 1 x n 容n 1 n 因為 0,1 所以lim n n 1 n 0所以結果為0 x 1 x x趨於正無窮大時的極限 這個沒法用夾 來逼定理。只能用洛自比達法則 設 y x...