1樓:零下七度
設d、m為兩個非空實數集,如果按照某個確定的對應法則f,使得對於集合d中的任意一個數x,在集合m中都有唯一確定的數y與之對應,那麼就稱f為定義在集合d上的一個函式,記做y=f(x)。
其中,x為自變數,y為因變數,f稱為對應關係,集合d成為函式f(x)的定義域,為函式f的值域,對應關係、定義域、值域為函式的三要素。
本質為任意角的集合與一個比值的集合的變數之間的對映,通常的三角函式是在平面直角座標系中定義的,其定義域為整個實數域,另一種定義是在直角三角形中,但並不完全,現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴充套件到複數系。
其主要根據為:
1、分式的分母不能為零。
2、偶次方根的被開方數不小於零。
3、對數函式的真數必須大於零。
4、指數函式和對數函式的底數必須大於零且不等於1。
函式的定義域定義方法:
自然定義域,若函式的對應關係有解析表示式來表示,則使解析式有意義的自變數的取值範圍稱為自然定義域。例如函式:
要使函式解析式有意義,則:
因此函式的自然定義域為:
2樓:夢色十年
求函式的定義域需要從這幾個方面入手:
(1)分母不為零
(2)偶次根式的被開方數非負。
(3)對數中的真數部分大於0。
(4)指數、對數的底數大於0,且不等於1
(5)y=tanx中x≠kπ+π/2
擴充套件資料
函式三要素:
在一個變化過程中,發生變化的量叫變數(數學中,常常為x,而y則隨x值的變化而變化),有些數值是不隨變數而改變的,我們稱它們為常量。
自變數(函式):一個與它量有關聯的變數,這一量中的任何一值都能在它量中找到對應的固定值。
因變數(函式):隨著自變數的變化而變化,且自變數取唯一值時,因變數(函式)有且只有唯一值與其相對應。
函式值:在y是x的函式中,x確定一個值,y就隨之確定一個值,當x取a時,y就隨之確定為b,b就叫做a的函式值。
3樓:左手半夏右手花
定義域是函式y=f(x)中的自變數x的範圍。
求函式的定義域需要從這幾個方面入手:
1、分母不為零
2、偶次根式的被開方數非負。
3、對數中的真數部分大於0。
4、指數、對數的底數大於0,且不等於1
5、y=tanx中x≠kπ+π/2,
6、y=cotx中x≠kπ。
已知函式解析式時:只需要使得函式表示式中的所有式子有意義1、表示式中出現分式時:分母一定滿足不為0;
2、 表示式中出現根號時:開奇次方時,根號下可以為任意實數;開偶次方時,根號下滿足大於或等於0(非負數);
3、表示式中出現指數時:當指數為0時,底數一定不能為0;
4、根號與分式結合,根號開偶次方在分母上時:根號下大於0;
5、表示式中出現指數函式形式時:底數和指數都含有x,必須滿足指數底數大於0且不等於1.(0《底數<1;底數》1);
6、表示式中出現對數函式形式時:自變數只出現在真數上時,只需滿足真數上所有式子大於0,且式子本身有意義即可;自變數同時出現在底數和真數上時,要同時滿足真數大於0,底數要大0且不等於1。[ f(x)=logx(x²-1) ]
4樓:半蓮富
函式的定義域如何求,數學小知識
5樓:李快來
解:定義域:
x²-1≠0
x²≠1
x≠±1
∴定義域:x∈(-∞,-1)∪(-1,+1)∪(1,+∞)朋友,請採納正確答案,你們只提問,不採納正確答案,回答都沒有勁!!!
朋友,請【採納答案】,您的採納是我答題的動力,如果沒有明白,請追問。謝謝。
6樓:獅子女孩的心思
求函式定義域的情形和方法總結:
已知函式解析式時:只需要使得函式表示式中的所有式子有意義。
(1)常見要是滿足有意義的情況簡總:
①表示式中出現分式時:分母一定滿足不為0;
②表示式中出現根號時:開奇次方時,根號下可以為任意實數;開偶次方時,根號下滿足大於或等於0(非負數);
③表示式中出現指數時:當指數為0時,底數一定不能為0;
④根號與分式結合,根號開偶次方在分母上時:根號下大於0;
⑤表示式中出現指數函式形式時:底數和指數都含有x,必須滿足指數底數大於0且不等於1.(0《底數<1;底數》1);
⑥表示式中出現對數函式形式時:自變數只出現在真數上時,只需滿足真數上所有式子大於0,且式子本身有意義即可;自變數同時出現在底數和真數上時,要同時滿足真數大於0,底數要大0且不等於1。[ f(x)=logx(x²-1) ]
注:(1)出現任何情形都是要注意,讓所有的式子同時有意義,及最後求的是所有式子解集的交集。
(2)求定義域時,儘量不要對函式解析式進行變形,以免發生變化。(形如:f(x)=x²/x)
2..抽象函式(沒有解析式的函式)解題的方法精髓是「換元法」,根據換元的思想,我們進行將括號為整體的換元思路解題,所以關鍵在於求括號整體的取值範圍。總結為:
(1)給出了定義域就是給出了所給式子中x的取值範圍;
(2)在同在同一個題中x不是同一個x;
(3)只要對應關係f不變,括號的取值範圍不變;
(4)求抽象函式的定義域個關鍵在於求f(x)的取值範圍,及括號的取值範圍。
3.複合函式定義域
複合函式形如:y=f(g(x)),理解複合函式就是可以看作由幾個我們熟悉的函式組成的函式,或是可以看作幾個函式組成一個新的函式形式。
7樓:熠兒
多刷刷題目,總結自己的經驗和方法
8樓:匿名使用者
常見的是:分母不為零,偶次方根恆為正,對數的真數大於零…
求函式的值域和定義域的方法
9樓:珍愛
定義域:
明確幾種特殊函式的定義域
如帶根的(大於等於零),未知數在分母的(不等於零),對數(大於零)等。
值域:(1)配方法:適用於二次函式型
(2)分離常數法:分子分母都有未知數
例:y=(2x+1)/(x-3)
=[2(x-3)+7]/(x-3)
=2+7/(x-3)
因為7/(x-3)不等於0
所以y不等於2
(3)反解法:
例:y=(2x+1)/(x-3)
(y-2)x-3y-1=0
所以x=(3y+1)/(y-2)
所以y不等於2
f(x)=(ax+b)/(cx+d)
f(x)不等於a/c
(4)判別式法:反解之後用判別式
(5)換元法
(6)影象法
10樓:敖玉蘭騎辛
1-a^x>0恆成立
則a^x<1
i)00
ii)a>1,a^x在r上單調增,要滿足a^x<1只需x<0
綜上,函式的定義域為(分段寫)
x>0,01
值域為r
11樓:
定義域好說!
首先,要知道一些常識,比如根號下的數比大於等於0,分母不是0……,這些對你很有幫助!
這樣,你可以把原式的數值帶入!就可以秋初定義域!
值域……考慮就比較多了!
首先,要考慮定義域的問題!它直接關係到值域!
其次,也是考試最願考的,就是分項因式!小學管這個叫分母/分子有理化!就是把原有的式子化成一個常數和一些有未知數的分數的加減!這可以求出一些不可能是值域的值!這很重要!
以上高中幾年應該沒什麼問題!謝謝~
12樓:匿名使用者
定義域直接求就可以了,值域一般求出函式的最大值與最小值即可,也可以將函式看作是關於x的二次方程,若y的取值可以讓方程有解,則y在函式值域中,所以只要令△=b^2-4ac即可求出函式的值域
13樓:匿名使用者
果然...........難.....
函式的定義域怎麼表示
14樓:匿名使用者
函式的定義域表示方法有不等式、區間、集合等三種方法。
例如:y=√(1-x)的定義域可表示為:1)x≤1;2)x∈(-∞,1];3)。
定義域(高中函式定義)設a,b是兩個非空的數集,如果按某個確定的對應關係f,使對於集合a中的任意一個數x,在集合b中都有唯一確定的數f(x)和它對應,那麼就稱f:a--b為集合a到集合b的一個函式,記作y=f(x),x屬於集合a。其中,x叫作自變數,x的取值範圍a叫作函式的定義域。
擴充套件資料:函式值域
值域定義
函式中,因變數的取值範圍叫做函式的值域,在數學中是函式在定義域中應變數所有值的集合
常用的求值域的方法
(1)化歸法;
(2)圖象法(數形結合)
(3)函式單調性法,
(4)配方法;
(5)換元法;
(6)反函式法(逆求法);
(7)判別式法;
(8)複合函式法;
(9)三角代換法;
(10)基本不等式法等。
15樓:護具骸骨
定義域表示方法有不等式、區間、集合等三種方法。
y=[√(3-x)]/[lg(x-1)] 的定義域可表示為:1)x≤1;2)x∈(-∞,1];3)。
設a,b是兩個非空的數集,如果按某個確定的對應關係f,使對於集合a中的任意一個數x,在集合b中都有唯一確定的數f(x)和它對應,那麼就稱f:a--b為集合a到集合b的一個函式,記作y=f(x),x屬於集合a。其中,x叫作自變數,x的取值範圍a叫作函式的定義域。
定義域與不等式和方程都存在著聯絡,令函式值等於零,從幾何角度看,對應的自變數是影象與x軸交點;從代數角度看,對應的自變數是方程的解。
另外,把函式的表示式(無表示式的函式除外)中的「=」換成「<」或「 >」,再把「y」換成其它代數式,函式就變成了不等式,可以求自變數的範圍。
16樓:馬興德
(高中函式定義)設a,b是兩個非空的數集,如果按某個確定的對應關係f,使對於集合a中的任意一個數x,在集合b中都有唯一確定的數f(x)和它對應,那麼就稱f:a--b為集合a到集合b的一個函式,記作y=f(x),x屬於集合a。其中,x叫作自變數,x的取值範圍a叫作函式的定義域;
如果一個函式是具體的,它的定義域我們不難理解。但如果一個函式是抽象的,它的定義域就難以捉摸。
例如:y=f(x) 1≤x≤2與y=f(x+1)的定義域相同嗎?值域相同嗎?
如果已知f(x)的定義域是x∈ [1,2],f(x+1)的定義域是什麼?因為f(x)的定義域是 x ∈ [1,2],即是說對1≤x≤2中的每一個數值f(x)都有函式值,超出這個範圍內的任何一個數值f(x)都沒有函式值。例如3就沒有函式值,即f⑶就無意義。
因此,當x+1的取值超出了[1,2]這個範圍,f(x+1)也就沒有了函式值,所以f(x+1)的定義域是1≤x+1≤2這個不等式的解集;所以解得0≤x≤1,此時x的定義域為x∈[0,1](定義域總是指x能取的範圍與經過括號內變換後的範圍不同)。定義域發生了改變。但是值域還是相同的,因為f進行變換的範圍沒有改變。
有關求函式定義域,值域的題目,求函式的定義域和值域的題!越多越好!要答案和解析的!
1.f x 的定義域為copyr ax 2 2x a 0恆成立 a 0且 4 4a 2 0 所以 a 1 2.f x 的值域是r ax 2 2x a 能取遍大於0的所有的數a 0且 4 4a 2 0 所以 0 a 1 1.f x 的定義域為r ax 2 2x a 0恆成立就可以了,也 就是隻需滿足 ...
函式定義域值域的問題,函式定義域值域
1.設 x 1 t y t t 2 1 t 0時 y 0 t 0 是 y 1 t 1 t t 1時 y最大 1 2 t 0時 y最小 0 值域為 0,1 2 2.4 x 2 的值域為 0,2 又.4 x 2 2 n n 整數 若相等,則tan無意義 所以n只能取0.若n取1,則3 2 2 超過了.4...
已知值域求定義域,求函式定義域和值域有哪些方法?(詳細說明)
函式對稱軸為x 1,在 5 x 0之間所以當x 1時取最大值為4 當x 5時取最小值為 12 所以值域為 12,4 解 y x 2 x 3 x 2 x 1 3 1 x 1 4 當 x 1 時,y 有最大值 4函式 y 的對稱軸為 x 1 丨 5丨 丨 1丨 4 丨 1丨 丨0丨 1 當 x 5 時,...