如何求函式u根號下x2y2z2的偏導數PS求

2021-03-07 04:08:44 字數 5364 閱讀 4950

1樓:demon陌

具體回答如下:

一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。

在 xoy 平面內,當動點由 p(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般來說是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。

2樓:drar_迪麗熱巴

解題過程如下圖:

在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函式 f(x,y) 在域 d 的每一點均可導,那麼稱函式 f(x,y) 在域 d 可導。

此時,對應於域 d 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 d 確定了一個新的二元函式,稱為 f(x,y) 對 x (對 y )的偏導函式。簡稱偏導數。

按偏導數的定義,將多元函式關於一個自變數求偏導數時,就將其餘的自變數看成常數,此時他的求導方法與一元函式導數的求法是一樣的。

3樓:匿名使用者

根號下x^2+y^2+z^2就相當於x^2+y^2+z^2的二分之一次方然後再求導就可以了

4樓:匿名使用者

你是說求關於哪個的偏倒數,是x還是y,還是z?還是求全微分?

數學分析和高等數學有什麼區別?

5樓:e滾滾滾

數學分析注重原理分析,高等數學注重應用實際

1、數學分析概念多,證明多,是學習研究複雜函式的方法,高等數學主要的目的是解決工程上遇到的一些問題。

2、高等數學側重於應用 而數學分析更側重於理論的推導 。

3、數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多。

4、數學分析更偏重於推導過程,而高等數學更偏重於結果的使用。

5、數學分析作為數學系本科生的基礎課是整個分析學的基礎,數學分析是檢驗一個人對數學是否感興趣的標杆。

不是數學專業的建議還是學習高等數學,畢竟都是側重於應用數學知識,而不是**原理。

高等數學同濟版是大多數大學的高數教材,可以參考一下。

6樓:塔駡德

高等數學是對大學數學的一個總稱。

高等數學有著很多分支其中有數學分析,高等代數,微分方程等等。非數學類專業所學的課程,是數學中的基礎,內容全面,覆蓋面廣,他容納了數學專業所學的《數學分析》《高等代數》《空間解析幾何》,但相對簡單,重在做題,對定理和公式的由來不做要求。在工科中本分這麼細,統稱高等數學。

數學分析是數學類專業的課程,數學分析概念多,證明多。相對抽象,難度較大,重在證明定理和公式的由來。

拓展資料:

從內容上說高等數學包含:極限理論(不過不含基礎性的證明),一元微分和積分,弧微分,多元微分和積分,初等常微分方程,級數,空間解析幾何,向量代數等。

數學分析:

(1)從三個角度,戴德金分割,區間套,序列闡述了有理數是如何向實數擴張的)極限理論,(包含基礎性的證明,比如柯西收斂定理的證明),一元微分和積分,多元微分和積分,級數等。

(2)從形式上看,數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理,很多書本都是選擇其中一個當作公理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多,比如初等的常微分方程就是應用的表現。

(3)從目的上說,數學分析主要是數學系以及其他極少數系(比如資訊方面的學生)的不本科生學習,主要目的是養成良好的證明習慣,為以後數學工作打好基礎。

7樓:娉婷嫋嫋

高等數學包括數學分析。

區別:

1、內容上

從內容上說高等數學包含:極限理論(不過不含基礎性的證明),一元微分和積分,弧微分,多元微分和積分,初等常微分方程,級數,空間解析幾何,向量代數等。

數學分析包含:實數理論,(從三個角度,戴德金分割,區間套,序列闡述了有理數是如何向實數擴張的)極限理論,(包含基礎性的證明,比如柯西收斂定理的證明),一元微分和積分,多元微分和積分,級數等

2、形式上

從形式上看,數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理,很多書本都是選擇其中一個當作公理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多,比如初等的常微分方程就是應用的表現。

3、目的

從目的上說,數學分析主要是數學系以及其他極少數系(比如資訊方面的學生)的本科生學習,主要目的是養成良好的證明習慣,為以後數學工作打好基礎;高等數學主要是面向工科的學生以及物理經濟等專業的學生的。

拓展資料:

高等數學指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

是工科、理科研究生考試的基礎科目。

又稱高階微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,幷包括它們的理論基礎(實數、函式和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。

數學中的分析分支是專門研究實數與複數及其函式的數學分支。它的發展由微積分開始,並擴充套件到函式的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。

8樓:1234小妖精

數學分析和高等數學的主要區別為:數學分析注重原理分析,高等數學注重應用實際。從難度上來講,數學分析更難,比高等數學學得更深更細,數學分析對於數學系的學生是要連續學習三個學期的,作為後面專業學習的基礎課程。

1數學分析和高等數學的區別

1、數學分析概念多,證明多,是學習研究複雜函式的方法,高等數學主要的目的是解決工程上遇到的一些問題。

2、高等數學側重於應用 而數學分析更側重於理論的推導 。

3、數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多。

4、數學分析更偏重於推導過程,而高等數學更偏重於結果的使用。

5、數學分析作為數學系本科生的基礎課是整個分析學的基礎,數學分析是檢驗一個人對數學是否感興趣的標杆。

9樓:匿名使用者

數學分析一般為數學專業的教材,其他理科專業主要學習高等數學。

數學分析比高等數學難度大。但是高等數學涵蓋的內容除了數學分析的一些基本知識微積分的部分,還有空間解析幾何的內容。學理論物理基本上高等數學就夠用了。

如果你要考研,那高數考試內容還含有概率統計和線性代數兩塊內容,不過還是以微積分為主。

10樓:free無法修改

高數跟數分一比就是渣渣

11樓:匿名使用者

高等數學是本科學的,其實算挺簡單的了。數學分析是研究生學的,像聽天書一樣。

12樓:匿名使用者

簡單說,論廣度,高等數學範圍更廣。

論深度,數學分析更深。

做理論物理怎麼能不學數學分析呢,高等代數太淺了。

13樓:匿名使用者

數學分析是數學專業的基礎課,比高等數學精細

高等數學是除數學專業外其他系的數學教程,內容比數學分析廣泛,涵蓋很多數學知識,數學分析的內容也在其中

高等數學∑是什麼意思 5

14樓:月下者

∑符號表示

求和,∑讀音為sigma,英文意思為sum,summation,就是和。用∑表示求和的方法叫做singa notation,或∑ notation。它的小寫是σ,在物理上經常用來表示面密度。

(相應地,ρ表示體密度,η表示線密度)。

大寫σ用於數學上的總和符號,比如:∑pi,其中i=1,2,...,t,即為求p1 + p2 + ...

+ pt的和。小寫σ用於統計學上的標準差。西裡爾字母的с及拉丁字母的s都是由sigma演變而成。

擴充套件資料

大寫σ用於數學上的總和符號,比如:∑pi,其中i=1,2,...,t,即為求p1 + p2 + ...

+ pt的和。小寫σ用於統計學上的標準差。西裡爾字母的с及拉丁字母的s都是由sigma演變而成。

詳解與應用

1、∑符號表示求和,∑讀音為sigma,英文意思為sum,summation,就是和。

∑用法舉例

用∑表示求和的方法叫做sigma notation,或∑ notation。它的小寫是σ,在物

理上經常用來表示面密度。(相應地,ρ表示體密度,η表示線密度)

2、∑的用法:

其中i表示下界,n表示上界, k從i開始取數,一直取到n,全部加起來。

參考資料

15樓:縱橫豎屏

∑ :求和符號。

大寫σ用於數學上的總和符號,比如:∑pi,其中i=1,2,...,t,即為求p1 + p2 + ...

+ pt的和。小寫σ用於統計學上的標準差。西裡爾字母的с及拉丁字母的s都是由sigma演變而成。

也指求和,這種寫法表示的就是∑j=1+2+3+…+n。

擴充套件資料:

∑ (求和符號)

英語名稱:sigma

漢語名稱:西格瑪(大寫σ,小寫σ)

第十八個希臘字母。在希臘語中,如果一個單字的最末一個字母是小寫sigma,要把該字母寫成 ς ,此字母又稱final sigma(unicode: u+03c2)。

在現代的希臘數字代表6。

詳解與應用

1、∑符號表示求和,∑讀音為sigma,英文意思為sum,summation,就是和。

用∑表示求和的方法叫做sigma notation,或∑ notation。它的小寫是σ,在物理上經常用來表示面密度。(相應地,ρ表示體密度,η表示線密度)

2、∑的用法:

其中i表示下界,n表示上界, k從i開始取數,一直取到n,全部加起來。

∑ i 這樣表達也可以,表示對i求和,i是變數

求函式y2根號下,求函式 y 2x 根號下x2 3x 2 的值域

對於y 2x x 2 3x 2 必須有 x 2 3x 2 0所以 x 1 x 2 0 即 x 1 0,x 2 0。x 2。或者 x 1 0,x 2 0。解得 x 1。即 x 2,或版者x 1 當權x 2,時,因為y 2 8,所以y 8,當x 1 時,因為y 1 2,所以y 2 求函式抄y 2x x ...

求曲線x23y2z29,z23x2y2在點

證明 baix y 2 x y du0 zhi x y x dao2 y 2 0 x 3 y 3 x 2y xy 2 同理x 3 z 3 x 2z xz 2 z 3 y 3 z 2y zy 2 xyz不都相等,所以上面三式不專能同時屬取等號 x 3 y 3 x 3 z 3 z 3 y 3 x 2y ...

3x 2y 2z 3 2x 4y 3z 3 5x 2y 3z 12三元一次方程組

3x 2y 2z 3.2x 4y 3z 3.5x 2y 3z 12.解 得 8x z 9.2 得 4x 7z 3.由 得 z 8x 9 把 代入 得 x 1把x 1代入 得 z 1把x 1 z 1代入 得 y 2即 方程組的解是 x 1 y 2 z 12x 3y 2z 10.3x 2y 2z 1 2...