如何判斷函式奇偶性判斷函式奇偶性最好的方法

2021-03-07 09:27:17 字數 6468 閱讀 8632

1樓:demon陌

1 先分解函式為常見的一般函式,比如多項式x^n,三角函式,判斷奇偶性

2 根據分解的函式之間的運演算法則判斷,一般只有三種種f(x)g(x)、f(x)+g(x),f(g(x))(除法或減法可以變成相應的乘法和加法)

3 若f(x)、g(x)其中一個為奇函式,另一個為偶函式,則f(x)g(x)奇、f(x)+g(x)非奇非偶函式,f(g(x))奇

4 若f(x)、g(x)都是偶函式,則f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶

5 若f(x)、g(x)都是奇函式,則f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇

擴充套件資料:

偶函式:若對於定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)稱為偶函式。

奇函式:若對於定義域內的任意一個x,都有f(-x)=-f(x),那麼f(x)稱為奇函式。

定理奇函式的影象關於原點成中心對稱圖表,偶函式的圖象關於y軸成軸對稱圖形。

f(x)為奇函式《==》f(x)的影象關於原點對稱

點(x,y)→(-x,-y)

奇函式在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。

偶函式在某一區間上單調遞增,則在它的對稱區間上單調遞減。

(1)奇函式在對稱的單調區間內有相同的單調性

偶函式在對稱的單調區間內有相反的單調性

(2)若f(x+a)為奇函式,則f(x)的影象關於點(a,0)對稱

若f(x+a)為偶函式,則f(x)的影象關於直線x=a對稱

(3)在f(x),g(x)的公共定義域上:奇函式±奇函式=奇函式

偶函式±偶函式=偶函式

奇函式×奇函式=偶函式

偶函式×偶函式=偶函式

奇函式×偶函式=奇函式

上述奇偶函式乘法規律可總結為:同偶異奇

2樓:我不是他舅

先看定義域是否關於原點對稱

如果不是關於原點對稱,則函式沒有奇偶性

若定義域關於原點對稱

則f(-x)=f(x),f(x)是偶函式

f(-x)=-f(x),f(x)是奇函式

3樓:濯友瑤肇螺

黃成琪(廣西天等縣高中)判斷函式奇偶性,是近年來高考和高中數學競賽命題的一個重要內容.怎樣才能快捷、準確地判斷函式的奇偶性呢?下面給出幾種常用的判斷方法,僅供參考。

一、定義域法一個函式是奇(或偶)函式,其定義戰必關於原點對稱,它是函式為奇偶性的必要條件.若函式的定義城不具有上述特徵,則函式為非奇偶函式.{3iji試判斷函式u。。in。』的奇偶性.解顯然,函式的定義域。

>0,由於它不關於原點對稱,故知u-e。。。』為菲奇非偶函式.注意者如下解,則是錯5吳的:由。

l=e』」」m。=。』/(一x)。

(一。)』一一。『。

一/(。)j(。)=。

』。。『為奇函式。事實上,由y。

el。。』==!if=。

3的變換中,並不是恆等變換,函式的定義城由。>0==。er已發生變化,如此解必然致誤.=、利用八。

)十八一。)。0和八。

)一八一。)=0.在函式八。)的定義城關於原點成軸對稱的前提下,若f(。

)十八一。)=0,則f(。)為專函式;若j(。

)一j(一.y)。

4樓:逄富前曼雁

第一步:先判定義域,看看是否關於原點對稱;第二步:計算f(-x),注意化簡,這題還需要你事先把那個1/2先和前面的式子通分的,你需要通分之後將的f(-x)分母化成和f(x)一樣,即可以判斷奇偶性了。

5樓:曾德文溥夏

恩,函式的定義域很重要,是靈魂,要先判斷,函式的定義域是否關於原點對稱,若不,則是非奇非偶函式,若是,則判斷f[x]是否等於f[-x],等於則為偶函式,不等,則為奇函式

還有一種方法,就是影象法,若關於原點對稱,就是奇函式,若關於y軸對稱,則為奇函式,當然前提還是要判斷定義域

6樓:簡樹花晁己

用定義很簡單就能判斷了,計算f(-x),若結果為f(x)則為偶函式,若為-f(x)則為奇函式。

如判斷函式f(x)=x+1/x的奇偶性:

f(-x)=-x-1/x=-(x+1/x)=-f(x)注意:必須說明f(x)的定義域是否關於x軸對稱或關於原點對稱又因為x屬於r

所以,f(x)為奇函式

7樓:竭儉許雨

y=2x和y=2x+3都是奇函式,如果要畫圖,就先畫出y=2x的圖(過(0,

0)(1,

2)兩個點,然後連線,兩點確定一條直線

),再向上平移3個單位就可得到y=2x+3的影象判斷函式奇偶性,應用它本身的性質去判斷--1.先看定義域,看所求函式關不關於原點對稱,如果不關於原點對稱,那麼就是非奇非偶函式.2.

看符不符合f(x)=f(-x)符合為偶函式,如果符合f(-x)=-f(x)就是奇函式.(有時很難判斷的函式可以代個數,例如1進去檢驗)

8樓:潘小之牛兆

特別要說明的是函式的奇偶性只是單獨對一個函式而言,而此題中的函式

y=log3^x

y=3^x

是兩個函式在其定義域內,只能說明是關於直線y=x對稱,不能說成是奇偶性的。這兩個函式都既不是奇函式也不是偶函式。

一般地,對於函式f(x)

(1)如果對於函式定義域內的任意一個x,都有f(-x)=-f(x),那麼函式f(x)就叫做奇函式。

(2)如果對於函式定義域內的任意一個x,都有f(-x)=f(x),那麼函式f(x)就叫做偶函式。

(3)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。

(4)如果對於函式定義域內的任意一個x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那麼函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。

說明:①奇、偶性是函式的整體性質,對整個定義域而言

②奇、偶函式的定義域一定關於原點對稱,如果一個函式的定義域不關於原點對稱,則這個函式一定不是奇(或偶)函式。

(分析:判斷函式的奇偶性,首先是檢驗其定義域是否關於原點對稱,然後再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)

9樓:昝穎卿庫歌

判斷函式的奇偶性有三個標準:

第一、奇偶性先看定義域是不是關於原點對稱,如果不是,那就是非奇非偶函式

第二、關於y對稱是偶函式,關於原點對稱是奇函式.

第三、看f(-x)與f(x)的關係,如果f(-x)=f(x),就是偶函式,如果f(-x)=-f(x),就是奇函式

10樓:化凡碩怡和

將自變數x的相反數代入原函式,如果結果仍未y是偶函式,如果結果為-y就是奇函式

11樓:宿寒鬆梅全

第一種,根據影象,如果影象關於y軸對稱,那是偶函式,。。。如果關於原點對稱,那是奇函式。。。

還可以用代數法。。。根據f(x)=f(-x)可知這是偶函式。。

根據f(-x)=-f(x),可知這是奇函式。。

在一個就是在定義域是r的情況下,用f(0)=0也可以判斷是奇函式。。

希望可以幫到你

12樓:少竹折儀

把負數的取值代進去,如果其結果同其代該負數的相反數所得的值一樣,那麼這個函式就是偶函式。就是

f(--x)== f(x),比如代入---1,但是其結果同代1進去計算的結果一樣。

奇函式就是把負數的取值代進去,如果其結果同其代該負數的相反數所得的值相反,那麼這個函式是奇函式,即f(--x)==

--f(x),比如代入--1,所得結果和代1的結果是相反數

13樓:接靜白軍涉

首先,定義域要有關於原點對稱。

其次,看下f(-x);

最後,如果f(x)=f(-x),則是偶函式。如果f(x)=-f(-x),是奇函式,其餘的都不是。

14樓:勾貞焉微

判斷函式奇偶性具體步驟如下:先求函式的定義域,若定義域不關於原點對稱,則為非奇非偶函式,若定義域關於原點對稱,則有成為奇偶函式的可能,此時,若成立,則為偶函式;若成立,則為奇函式;若成立,則既是奇函式也是偶函式;若和都不成立,則為非奇非偶函式。

15樓:520晨翔

除了上面說的,還有一種就是等於0的,是既奇又偶函式 ,在處理實際問題時,要注意到這一點,上次做題目就少了這一點,希望大家不要跟我一樣

f(x)=f(-x)偶函式

f(-x)=-f(x)奇函式

判斷函式奇偶性時先判斷定義域,若不關於原點對稱,則是非奇非偶函式

16樓:o客

判斷函式奇偶性的主要四法

1.用必要條件

函式具有奇偶性的必要條件是定義域關於原點對稱.

常用於選擇題,如果不是關於原點對稱,那麼函式沒有奇偶性.

2.用奇偶性

若定義域關於原點對稱

則f(-x)=f(x),f(x)是偶函式.

f(-x)=-f(x),f(x)是奇函式.

3.用函式運算

f是偶函式,f是偶函式,j是奇函式,j是奇函式.

則偶+偶=偶,偶×偶=偶,

奇+奇=奇,奇×奇=偶 ,

奇×偶=奇。

4.用圖象

關於y軸對稱的是偶函式,

關於原點對稱的是奇函式。

17樓:血之殘殤

f(x)= f(- x)是偶函式

f(- x)=- f(x)是奇函式

18樓:不愛學習的小鬼

1。先看定義域,看是否關於原點對稱

2.將-x帶入f(x)中,看於f(x)的關係f(x)= f(- x)是偶函式

f(- x)=- f(x)是奇函式

若為抽象函式,則帶入一些較為特殊的值,如1/x、x的平方等

判斷函式奇偶性最好的方法

19樓:angela韓雪倩

判定奇偶性四法:

(1)定義法

用定義來判斷函式奇偶性,是主要方法 . 首先求出函式的定義域,觀察驗證是否關於原點對稱. 其次化簡函式式,然後計算f(-x),最後根據f(-x)與f(x)之間的關係,確定f(x)的奇偶性.

(2)用必要條件.

具有奇偶性函式的定義域必關於原點對稱,這是函式具有奇偶性的必要條件.

例如,函式y=的定義域(-∞,1)∪(1,+∞),定義域關於原點不對稱,所以這個函式不具有奇偶性.

(3)用對稱性.

若f(x)的圖象關於原點對稱,則 f(x)是奇函式.

若f(x)的圖象關於y軸對稱,則 f(x)是偶函式.

(4)用函式運算.

如果f(x)、g(x)是定義在d上的奇函式,那麼在d上,f(x)+g(x)是奇函式,f(x)•g(x)是偶函式. 簡單地,「奇+奇=奇,奇×奇=偶」.

類似地,「偶±偶=偶,偶×偶=偶,奇×偶=奇」.

擴充套件資料:

奇函式在其對稱區間[a,b]和[-b,-a]上具有相同的單調性,即已知是奇函式,它在區間[a,b]上是增函式(減函式),則在區間[-b,-a]上也是增函式(減函式);偶函式在其對稱區間[a,b]和[-b,-a]上具有相反的單調性。

即已知是偶函式且在區間[a,b]上是增函式(減函式),則在區間[-b,-a]上是減函式(增函式)。但由單調性不能倒導其奇偶性。驗證奇偶性的前提要求函式的定義域必須關於原點對稱。

說明:①奇、偶性是函式的整體性質,對整個定義域而言。

②奇、偶函式的定義域一定關於原點對稱,如果一個函式的定義域不關於原點對稱,則這個函式一定不具有奇偶性。

③判斷或證明函式是否具有奇偶性的根據是定義。

偶函式:若對於定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)稱為偶函式。

奇函式:若對於定義域內的任意一個x,都有f(-x)=-f(x),那麼f(x)稱為奇函式。

定理奇函式的影象關於原點成中心對稱圖表,偶函式的圖象關於y軸成軸對稱圖形。

f(x)為奇函式《==》f(x)的影象關於原點對稱

點(x,y)→(-x,-y)

奇函式在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。

偶函式在某一區間上單調遞增,則在它的對稱區間上單調遞減。

性質:1、大部分偶函式沒有反函式(因為大部分偶函式在整個定義域內非單調函式)。

2、偶函式在定義域內關於y軸對稱的兩個區間上單調性相反,奇函式在定義域內關於原點對稱的兩個區間上單調性相同。

3、奇±奇=奇(可能為既奇又偶函式) 偶±偶=偶(可能為既奇又偶函式) 奇x奇=偶 偶x偶=偶 奇x偶=奇(兩函式定義域要關於原點對稱).

4、對於f(x)=f[g(x)]:

若g(x)是偶函式且f(x)是偶函式,則f[x]是偶函式。

若g(x) 是偶函式且f(x)是奇函式,則f[x]是偶函式。

若g(x)是奇函式且f(x)是奇函式,則f[x]是奇函式。

若g(x)是奇函式且f(x)是偶函式,則f[x]是偶函式。

5、奇函式與偶函式的定義域必須關於原點對稱。

怎麼判斷函式的奇偶性如何判斷函式的奇偶性步驟及方法

先看定義域是否關於原點對稱 如果不是關於原點對稱,則函式沒有奇偶性 若定義域關於原點對稱 則f x f x f x 是偶函式 f x f x f x 是奇函式 具體方法 1,定義法.定義域是否關於原點對稱,對稱是奇偶函式的前提條件 f x 是否等於 f x 2,圖象法.圖象關於原點中心對稱是奇函式 ...

高中函式判斷奇偶性。題目,高中函式判斷奇偶性

函式奇偶性的判定方法 函式奇偶性的判定方法較多,下面把常見的判定方法分類加以研究分析.因為fx關於y軸對稱,所以是偶函式 高中函式判斷奇偶性 10 判斷函式的奇偶bai性步du驟第一步 求函式zhi 定義域 1 定義域dao關於原點對稱,則求內f x 看其與f x 的關係 2 定容義域關於原點不對稱...

怎麼快速判斷函式的奇偶性,判斷函式奇偶性最好的方法

1 奇函式 偶函式的定義中,首先函式定義域d關於原點對稱。它們的影象特點是 奇函專數的影象屬關於原點對稱,偶函式的影象關於x軸對稱。即f x f x 為奇函式,f x f x 為偶函式 2 判斷函式的奇偶性大致有下列二種方法 1 用奇 如何判斷函式的奇偶性 判斷函式奇偶性最好的方法 判定奇偶性四法 ...