1樓:孤星殘月
判斷函式奇偶性和週期性按照定義即可,只是本題的函式是以積分上限函式給出的。
高數,運用函式的奇偶性計算定積分
2樓:趙磚
跟定積分原bai理一樣
在[-a,a]上
若f(x)為奇du函式,f(-x)=-f(x)∫zhi(-a,a) f(x) dx,令x=-u=∫(a,-a) f(-u)*(-du)
=∫(-a,a) f(-u) du
=∫(-a,a) -f(u) du
=-∫(-a,a) f(x) dx,移項得dao∫(-a,a) f(x) dx=0
同理∫專(-a,a) f(x) dx = 2∫(0,a) f(x) dx若屬f(x)為偶函式
至於二重積分
若d關於x軸和y軸都是對稱的
而且被積函式是關於x或y是奇函式的話,結果一樣是0例如d為x^2+y^2=1
則x,x^3,xy,xy^3,y^5,x^3y^3等等的結果都是0不要以為xy和x^3y^3是偶函式,奇偶性是對單一自變數有效的計算x時把y當作常數,所以對x的積分結果是0時,再沒必要對y積分了
高等數學函式的奇偶性判斷
3樓:匿名使用者
(復1).e^(-1/x2)是偶函式
制,x是奇函式,所以xe^(-1/x2)是奇函式,而arctanx也是奇函式,所以f(x)=xe^(-1/x2) +arctanx是奇函式;(2).xsinx是偶函式,1+x2也是偶函式,所以f(x)=(xsinx)/(1+x2)也是偶函式;(3).f(x)=(e^x-1)/(e^x+1)=1-2/(e^x+1),f(-x)=1-(2e^x)/(e^x+1),而f(-x)+f(x)=0可知f(x)= - f(-x),所以f(x)為奇函式.
4樓:西域牛仔王
^f(x) = xln[(1+x)/(1-x)] ,baif(-x) = -xln[(1-x)/(1+x)] = xln[(1+x)/(1-x)] = f(x),
因此是偶函式。
du中間
zhi用了對數法dao則:專lnx^n = nlnx 。這裡屬 (1-x)/(1+x) = [(1+x)/(1-x)] ^ -1 。
高中函式判斷奇偶性。題目,高中函式判斷奇偶性
函式奇偶性的判定方法 函式奇偶性的判定方法較多,下面把常見的判定方法分類加以研究分析.因為fx關於y軸對稱,所以是偶函式 高中函式判斷奇偶性 10 判斷函式的奇偶bai性步du驟第一步 求函式zhi 定義域 1 定義域dao關於原點對稱,則求內f x 看其與f x 的關係 2 定容義域關於原點不對稱...
怎麼快速判斷函式的奇偶性,判斷函式奇偶性最好的方法
1 奇函式 偶函式的定義中,首先函式定義域d關於原點對稱。它們的影象特點是 奇函專數的影象屬關於原點對稱,偶函式的影象關於x軸對稱。即f x f x 為奇函式,f x f x 為偶函式 2 判斷函式的奇偶性大致有下列二種方法 1 用奇 如何判斷函式的奇偶性 判斷函式奇偶性最好的方法 判定奇偶性四法 ...
怎麼判斷函式的奇偶性如何判斷函式的奇偶性步驟及方法
先看定義域是否關於原點對稱 如果不是關於原點對稱,則函式沒有奇偶性 若定義域關於原點對稱 則f x f x f x 是偶函式 f x f x f x 是奇函式 具體方法 1,定義法.定義域是否關於原點對稱,對稱是奇偶函式的前提條件 f x 是否等於 f x 2,圖象法.圖象關於原點中心對稱是奇函式 ...