高等數學函式的奇偶性判斷高等數學定積分奇偶性,計算

2021-03-10 09:00:25 字數 1493 閱讀 6905

1樓:匿名使用者

(復1).e^(-1/x2)是偶函式

制,x是奇函式,所以xe^(-1/x2)是奇函式,而arctanx也是奇函式,所以f(x)=xe^(-1/x2) +arctanx是奇函式;(2).xsinx是偶函式,1+x2也是偶函式,所以f(x)=(xsinx)/(1+x2)也是偶函式;(3).f(x)=(e^x-1)/(e^x+1)=1-2/(e^x+1),f(-x)=1-(2e^x)/(e^x+1),而f(-x)+f(x)=0可知f(x)= - f(-x),所以f(x)為奇函式.

2樓:西域牛仔王

^f(x) = xln[(1+x)/(1-x)] ,baif(-x) = -xln[(1-x)/(1+x)] = xln[(1+x)/(1-x)] = f(x),

因此是偶函式。

du中間

zhi用了對數法dao則:專lnx^n = nlnx 。這裡屬 (1-x)/(1+x) = [(1+x)/(1-x)] ^ -1 。

高等數學定積分奇偶性,計算

3樓:趙磚

跟定積分原理一樣

在[-a,a]上

若f(x)為奇函式,f(-x)=-f(x)∫(-a,a) f(x) dx,令x=-u=∫(a,-a) f(-u)*(-du)

=∫(-a,a) f(-u) du

=∫(-a,a) -f(u) du

=-∫(-a,a) f(x) dx,移項得∫(-a,a) f(x) dx=0

同理∫(-a,a) f(x) dx = 2∫(0,a) f(x) dx若f(x)為偶函式

至於二重積分

若d關於x軸和y軸都是對稱的

而且被積函式是關於x或y是奇函式的話,結果一樣是0例如d為x^2+y^2=1

則x,x^3,xy,xy^3,y^5,x^3y^3等等的結果都是0不要以為xy和x^3y^3是偶函式,奇偶性是對單一自變數有效的計算x時把y當作常數,所以對x的積分結果是0時,再沒必要對y積分了

4樓:匿名使用者

x是奇函式,積分為0

所以原式=2∫(0,2)-√(4-x²)dx (幾何意義,4分之1圓的面積)

=-2×π×2²÷4

=-2π

5樓:匿名使用者

式子可以分成兩個部分,然後分別考察奇偶性和幾何意義。

i=∫xdx - ∫√ dx

=0 - π*2²/2

=-2π

∫xdx 被積函式為奇函式,對稱區間上定積分為0;

∫√ dx 可以看做是上半圓 x²+y²=4的面積.

6樓:始雁盈寅

如果f(x)是偶函式,則「積分:(a,0)f(-t)dt=積分:(0,a)f(-t)dt」。

錯了!變換積分上下限不是要變號嗎?

對了!2.如果f(x)是偶函式,則積分:(a,b)f(-t)dt=積分:(a,b)f(t)dt,對嗎

太對了。

高中函式判斷奇偶性。題目,高中函式判斷奇偶性

函式奇偶性的判定方法 函式奇偶性的判定方法較多,下面把常見的判定方法分類加以研究分析.因為fx關於y軸對稱,所以是偶函式 高中函式判斷奇偶性 10 判斷函式的奇偶bai性步du驟第一步 求函式zhi 定義域 1 定義域dao關於原點對稱,則求內f x 看其與f x 的關係 2 定容義域關於原點不對稱...

怎麼判斷函式的奇偶性如何判斷函式的奇偶性步驟及方法

先看定義域是否關於原點對稱 如果不是關於原點對稱,則函式沒有奇偶性 若定義域關於原點對稱 則f x f x f x 是偶函式 f x f x f x 是奇函式 具體方法 1,定義法.定義域是否關於原點對稱,對稱是奇偶函式的前提條件 f x 是否等於 f x 2,圖象法.圖象關於原點中心對稱是奇函式 ...

判斷函式的奇偶性,判斷函式奇偶性最好的方法

1 判斷奇偶性必須先看定義域d,若不關於原點對稱則一定是非奇非偶函式 2 d關於原點對稱,且f x x 1 x f x 是奇函式 3 d關於原點對稱,且f x f x 是偶函式 4 d關於原點對稱,但是取f 1 f 1 f 1 所以是非奇非偶函式 5 d關於原點對稱,但是取f 1 f 1 f 1 所...