將下列函式展開成x的冪級數,並寫出收斂域

2021-03-11 07:19:10 字數 1492 閱讀 4931

1樓:睜開眼等你

如圖所示,你看一下,其實就是變形,然後套用已經有的冪級數的公式,括號裡的就是收斂域,因為必須都收斂,所以取交集!你自己試試看吧。

2樓:巴山蜀水

∵x²-2x-3=(x+1)(x-3),zhi∴f(x)=(1/4)[1/(x-3)-1/(1+x)]。

而,當丨

daox丨<1時,1/(1+x)=∑(-x)^n;當丨x/3丨<1時,1/(x-3)=(-1/3)/(1-x/3)=(-1/3)∑(x/3)^n,n=0,1,2,……,∞,版

取「丨x丨<1」和「丨x/3丨<1」的交集權,有丨x丨<1。

∴f(x)=(-1/4)∑[1/3^(n+1)+(-1)^n]x^n,其中丨x丨<1,n=0,1,2,……,∞。

供參考。

3樓:匿名使用者

解1:注意到一個等式的話,這個題就比較簡單了

tan(π/4+arctanx)=(1+x)/(1-x)

所以 arctan[(1+x)/(1-x)]=arctan[tan(π/4+arctanx)]=π/4+arctanx

所以原式=π/4+arctanx

所以原式=π/4+arctanx=π/4+∑[(-1)^n][x^(2n+1)]/(2n+1) [n=0->+∞]

解2:(來自星光下的守望者)

令g(x)=arctan[(1+x)/(1-x)],g(0)=π/4

∫[0->x]g'(t)dt = g(x)-g(0)=g(x)-π/4

g'(x)=[(1+x)/(1-x)]'/[1+(1+x)��/(1-x)��]=1/(1+x��)

g(x)=∫[0->x]g'(t)dt+π/4=∫[0->x] 1/(1+t��)dt+π/4

易知1/(1+t��)=1-t^2+t^4-t^6+…… |t|x] (1-t^2+t^4-t^6+……) dt

=π/4+(x-x^3/3+x^5/5-x^7/7+……)

=π/4+∑[(-1)^n][x^(2n+1)]/(2n+1) [n=0->+∞]

將一個函式成x的冪級數,並指出其收斂域。

4樓:匿名使用者

令y=1-x-2x²,利用基本公式展開,

lny=2{(y-1)/(y+1)+1/3*[(y-1)/(y+1)]^3+1/5*[(y-1)/(y+1)]^5+。。。},後將y值代人,化簡

收斂域版,1-x-2x²>0

計算,請自行權進行。希望對你有幫助。

5樓:

f(x)=ln(1+x)(1-2x)

定義域bai

為du-1由ln(1+x)=x-x²/2+x³/3-.... -1zhiln(1-2x)=-2x-2²x²/2-2³x³/3+...., -1/2=因此

daof(x)= -x-(2²+1)x²/2+(-2³+1)x³/3-......,

收斂域內為:容-1/2=

將函式fxsinx2展開成x的冪級數

sinx x x3 3 x 專5 5 sin x 2 x 2 x 2 3 3 x 2 5 5 x 2 x3 23 3 屬 x 5 2 5 5 sinx x x3 3 du x zhi5 5 sin x 2 x 2 x 2 3 3 x 2 5 5 x 2 x3 23 dao3 x 5 2 5 5 si...

將函式f x sinx 2展開成x的冪級數

解答抄 題設函式的各階求導 f n x 1 2 n sin 1 2x n 2 其中n 0 1 2 3 而 f n 0 取值為 0 1 2 0 1 8 0 1 32 n 0 1 2 3 因此f x 的邁克勞林級數為 f 0 f 0 x f 0 x 2 2 f n x n n 具體代入 0 x 2 0 ...

有關函式展開成冪級數問題,有關函式成冪級數問題

要麼後圖中 a 2n 1 2n 1,要麼前圖中後項係數是 2n 2.關於函式成冪級數的一個問題。先來看看通項的特點 把前面的符號項去掉 因此對於 在x 1的時候是滿足絕對收斂的 根據夾逼定理 p 級數的特點可以得到 所以區間的左右端點都能去到。而對於第二個函式,有 並且所以 因此根據夾逼定理和p 級...