1樓:
結果和過程都沒錯。分享另外一種替換解法。
第二個「=」處,應用等價無窮小量替換,arctan(tanx)²~(tanx)²=sec²xsin²x=sec²x(1-cos²x)。
∴原式=lim(x→0)(1+cosx)(secx)^4=2。
供參考。
2樓:和與忍
第三個等號右端分子的x^2錯了,arctan[tan^2 x]≠x^2 !
事實上,arctan[tan(x^2)]=x^2. 但arctan[tan^2 x]是arctan[(tanx)^2]的縮寫。
3樓:科技數碼答疑
這個得看題目的理解,是arctan(t^2)還是(arctant)^2,你認為的是前者,解法和答案是對的
一道求極限題 20
4樓:
恩對,好像運用求函式極限時候,可以把極限號放到函式裡就可以證明對了哈?就是lim ln f(x)=ln lim f(x)這樣來證。 不過,恩,我還是不替換好了,怕不行
5樓:佳尼斯
答案是(1-1)/(1-1)極值為0
高數一道求極限的題目
6樓:匿名使用者
當然錯了,分母極限是0,你怎麼求出的極限呢?而且你同除x也沒有任何意思,這種方法是遇到無窮時,要把無窮大化無窮小採用的,你這題通分後是0/0型,應該分解因式或者洛必達來求。
7樓:
分母也是0,x趨近於1,不是趨近於∞
求解一道大學高數的求極限題,謝謝?
8樓:匿名使用者
求解一道大學高數的求極限題:過程見上圖。
解這道大學高數的極限題,其求解方法屬於無窮-無窮型極限問題。求時,先通分再多次用洛必達法則,可以求出極限。
9樓:星球上的水晶
我也在學 太難了 哎
一道題目高等數學,高等數學一的一道題目,求答案
x 2 1 x 2 1 x 1 1 x 1 2 x 2 1 x 1 let 2 x 2 1 x 1 a x 1 b x 1 2 c x 1 2 a x 1 x 1 b x 1 c x 1 2 x 1,c 1 2 x 1,b 1 coef.of x 2 a c 0 a 1 2 2 x 2 1 x 1 ...
問一道高數求極限題目,問一道求極限的題(高等數學)
首先bai,上下約去x 1 得原式 lim x 1 2 x 2 du 3 x 1 x 然後,zhi上下dao 的極限可以直接求出來 就專是把1代進屬去 就得到原式 2 1 2 3 1 1 1 2 6 在求襲極限中 有一種很重要的方法 叫分子有理化 區別分母有理化 lim 3 x 1 x x x 2 ...
求教一道數學的極限題,求教一道數學極限題
因為limf x x趨於1 f 1 所以f 1 1 1 f 1 f 1 1 因此f x x 2 x 2 2x 3 x 1 1,然後化簡一下 求教一道數學極限題 利用迫斂性定理,就可以求出極限為0,具體解答 如圖所示,lim n 1 n 2 1 n 1 2 1 n n 2 n 1 n 2 1 n 2 ...