線性代數問題,線性方程組什麼情況無解,有唯一解和無限解

2021-03-03 21:07:08 字數 1694 閱讀 4501

1樓:小亮

這個首先要看你是齊次的線性方程組還是非齊次的,齊次的話,一定會有解,只在乎唯不唯一,當|a|=0時,有無數個解,不等於0時只有唯一零解,對於非齊次的話,當a的行列式不等於 0時有唯一解

**性代數中,非齊次線性方程組有唯一解,無解,無窮解的條件分別是什麼?

2樓:匿名使用者

方程組係數做成有沒有唯一解。

不同方程組個數 比係數個數多

3樓:匿名使用者

ax=0無非零解時.則a為滿秩矩陣。則ax=b一定有解ax=0有無窮多解時,則a一定不為滿秩矩陣,專ax=b的解得情況有屬無解和無窮多解

無解:r(a)≠r(a|b)

無窮解:r(a)等於r(a|b)。且不為滿秩ax=b無解時,可知ax=0一定有無窮多解ax=b 有唯一解時,可知a為滿秩矩陣,則ax=0只有零解齊次線性方程組,要麼零解(r(a)=n),要麼無窮解(r(a)

不能同時發生!

線性代數 線性方程組r(a)和r(a,b)和n取什麼的時候分別是無解,有唯一解,有無窮多解?

4樓:

r(a)=r(a,b)=n時有唯一解。

r(a)=r(a,b)

r(a)≠r(a,b)時非齊線性方程組無解。

n為未知數個數,也就是係數矩陣列數。

線性代數,為什麼如果齊次方程組只有零解,對應的非齊次方程組可能無解可能有唯一解?

5樓:是你找到了我

因為如果齊次方程組只有零解,說明r(a)=n(其中r(a)為矩陣a的秩),對應的非齊次方程組有如下兩種情況:

1、當r(a)=r(a,b)=n時,說明非齊次方程組有解,且是唯一的;

2、當r(b)不等於r(a,b)時,非齊次方程組無解。

非齊次線性方程組ax=b有解的充分必要條件是:係數矩陣的秩等於增廣矩陣的秩,即rank(a)=rank(a, b)(否則為無解)。

非齊次線性方程組有唯一解的充要條件是rank(a)=n。非齊次線性方程組有無窮多解的充要條件是rank(a)擴充套件資料:

非齊次線性方程組ax=b的求解步驟:

1、對增廣矩陣b施行初等行變換化為行階梯形。若r(a)2、若r(a)=r(b),則進一步將b化為行最簡形。

3、設r(a)=r(b)=r;把行最簡形中r個非零行的非0首元所對應的未知數用其餘n-r個未知數(自由未知數)表示,並令自由未知數分別等於

即可寫出含n-r個引數的通解。

6樓:demon陌

因為如果齊次方程組只有零解,說明r(a)=n,也就是方程係數構成的矩陣的秩是滿秩。如果變為非齊次,當r(a)=r(a,b)=n時,方程組解是唯一的,但是如果r(b)不等於r(a,b),方程組無解。

常數項全部為零的線性方程組。如果m設其係數矩陣為a,未知項為x,則其矩陣形式為ax=0。若設其係數矩陣經過初等行變換所化到的行階梯形矩陣的非零行行數為r。

7樓:匿名使用者

齊次方程組ax=0只有零解 <=> r(a) = n (a的列數 或 未知量個數)

對非齊次線性方程組 ax=b

若 r(a,b)=r(a)=n, 則有唯一解否則 r(a,b) ≠ r(a), 此時方程組無解.

線性代數方程組的問題,線性代數,線性方程組問題。

解 係數行列式 d 1 1 1 a b c bc ac ab r2 ar1,r3 bcr1 1 1 1 0 b a c a 0 c a b b a c r3 cr2 1 1 1 0 b a c a 0 0 b c a c b a b c a c 因為n元線性方程組有唯一解的充分必要條件是係數行列式d...

線性代數方程組解的結構,線性代數線性方程組的解的結構

若選項a中 a1 a2 改為 a1 a2 2,則 選a。非齊次方程組 ax b 特解是 a1 a2 2,匯出組即對應的齊次方程 ax 0 的基礎解內系是 b1.b2.b3,取任意常數 k1 k2 k3 k2 k3 k3,則 ax b 的通容解是 x k1 k2 k3 b1 k2 k3 b2 k3b3...

線性代數線性方程組,線性代數有幾種解線性方程組的方法

已對 a,b 進行了初等行變換,當 1 時,代人 得 x1 x2 x3 1,即 x1 1 x2 x3 特解 n 1,0,0 t 匯出組內 x1 x2 x3 的基礎解系是 容1 1,1,0 t,2 1,0,1 t 線性代數有幾種解線性方程組的方法?1 克萊姆法則 用克萊姆法則求解方程組實際上相當於用逆...