1樓:上海皮皮龜
無窮大的倒數等於無窮小,無窮小的倒數(當其不等於0時,因為此時倒數才有意義,而無窮小量是可能取0的)是無窮大量
2樓:匿名使用者
在自變數的同一變化過程中,如果f(x)為無窮大,那麼1/f(x)為無窮小;反之,如果f(x)為無窮小,且f(x)不等於0那麼1/f(x)為無窮大.
無窮大與無窮小的關係
3樓:江南的天堂
無窮大的
倒數等bai於無窮小,無窮小的倒du數(zhi當其不等於0時,因為此時dao倒數才有意義,而無內窮小量是可能取容0的)是無窮大量
比如limx-無窮大 1/x=0
無窮大和無窮小互為倒數
比如xy=1
y=1/x,當x-無窮時,y-0
x-0時,y-無窮
(2)無窮大就是在自變數的某個變化過程中絕對值無限增大的變數或函式。
例如,f(x)=1/x,是當x→0時的無窮大,記作lim(1/x)=∞(x→0)。
無窮大與無窮小具有倒數關係,即當x→a是f(x)為無窮大,則1/f(x)為無窮小。
無窮大為數學符號,是一種變數,記作∞。 [編輯本段]無窮大的3個分類無窮大分為正無窮大、負無窮大和無窮大(可正可負),分別記作+...
4樓:巨集蒼蘭涵亮
無窮大與無窮小的關係是反方向。
5樓:獅子城下鳴海
在自變數的同一變化過程中,如果f(x)為無窮大,那麼1/f(x)為無窮小;反之,如果f(x)為無窮小,且f(x)不等於0那麼1/f(x)為無窮大.
6樓:宰嘉歆謇運
等你到了大學學了高等數學你就會明白,無窮大無窮小都是有一定的概念的。簡單的說無窮大就是大的不可達到,而無窮小就是小的太小了。(這只是為了你明白)到了大學以後0也可以是無窮小
7樓:煉焦工藝學
f(x)是無窮大抄
,那f(x)就肯定不等於0了,直接說1/f(x)是無bai窮小,不需du要說f(x)不等於0。如果f(x)=0的話,那還zhi能是無窮大?dao
而f(x)是無窮小,就必須說明f(x)≠0,才能確定1/f(x)是無窮大,因為0也是無窮小。
8樓:乃酒是吾輩的
無窮大bai的倒數
等於無窮du小,無窮小的倒數zhi(當其不等於0時,因為dao此時倒數才有意回義,而無窮小量是可能取0的)是無窮答大量比如limx-無窮大 1/x=0 無窮大和無窮小互為倒數比如xy=1 y=1/x,當x-無窮時,y-0 x-0時,y-無窮(2)無窮大就是在自變數的某個變化過程中絕對值無限增大的變數或函式。例如,f(x)=1/x,是當x→0時的無窮大,記作lim(1/x)=∞(x→0)。無窮大與無窮小具有倒數關係,即當x→a是f(x)為無窮大,則1/f(x)為無窮小。
無窮大為數學符號,是一種變數,記作∞。 [編輯本段]無窮大的3個分類無窮大分為正無窮大、負無窮大和無窮大(可正可負),分別記作+...
9樓:永恆的跳跳虎
無窮小的定義:極限為零的變數稱為無窮小
(1)無窮小是變數,不能與很小內的數混淆;
(容2)零是可以作為無窮小的唯一的數.
無窮大的定義:絕對值無限增大的變數稱為無窮大.
(1)無窮大是變數,不能與很大的數混淆;
(2)無窮大是一種特殊的無界變數,但是無界變數未必是無窮大.
(3)無窮多個無窮小的代數和(乘積)未必是無窮小;
定理 在同一過程中,無窮大的倒數為無窮小;恆不為零的無窮小的倒數為無窮大.
1 - = y 中lim x->0 (x>0) 那麼這個時候y->正無窮大
x 同樣
1 - = -y 中lim x->0 (x>0) 那麼這個時候y->負無窮大x
無窮大與無窮小的關係無窮大是一種什麼概念
10樓:小小芝麻大大夢
無窮大的倒數等於無窮小,無窮小的倒數(當其不等於0時,因為此時倒數才有意義,而無窮小量是可能取0的)是無窮大量。
古希臘哲學家亞里士多德(aristotle,公元前384-322)認為,無窮大可能是存在的,因為一個有限量是無限可分的,但是無限是不能達到的。
擴充套件資料
12世紀,印度出現了一位偉大的數學家布哈斯克拉(bhaskara),他的概念比較接近現**論化的概念。
將8水平置放成"∞"來表示"無窮大"符號是在英國人沃利斯(john wallis)的**《算術的無窮大》(2023年出版)一書中首次提出的。
莫比烏斯帶常被認為是無窮大符號「∞」的創意**,因為如果某個人站在一個巨大的莫比烏斯帶的表面上沿著他能看到的「路」一直走下去,他就永遠不會停下來。但是這是一個不真實的傳聞,因為「∞」的發明比莫比烏斯帶還要早。
無限符號的等式
在數學中,有兩個偶爾會用到的無限符號的等式,即:∞=∞+1,∞=∞×1。
某一正數值表示無限大的一種公式,沒有具體數字,但是正無窮表示比任何一個數字都大的數值。 符號為+∞,同理負無窮的符號是-∞。
關於無窮大與無窮小的關係
11樓:匿名使用者
因為第一句話中
抄1/f(x)不可能為零bai。有前提條件:在du自變數的同一變化過程zhi中。
不是任何情況都可dao以用。對於c,可以給你舉一個反例:x。
=1,f(x)=x-1,g(x)=1-x時,c就是1/(x-1)+1/(1-x)=0,明顯地,0為惟一的常數無窮小量,不為無窮大量。對於d,因為一個無窮大量加上一個無窮小量還是無窮大量。對於a、b,顯然不對,因為f(x)=g(x)時,a、b選項就不對了。
希望採納,^-^
無窮大與無窮小的關係,無窮大與無窮小的關係無窮大是一種什麼概念
無窮大的 倒數等bai於無窮小,無窮小的倒du數 zhi當其不等於0時,因為此時dao倒數才有意義,而無內窮小量是可能取容0的 是無窮大量 比如limx 無窮大 1 x 0 無窮大和無窮小互為倒數 比如xy 1 y 1 x,當x 無窮時,y 0 x 0時,y 無窮 2 無窮大就是在自變數的某個變化過...
無窮大量與無窮小量的關係,無窮大與無窮小的關係無窮大是一種什麼概念
無窮大的倒數等於無窮小,無窮小的倒數 當其不du等於0時,因為此時倒數才有意義,內而無窮小量是容可能取0的 是無窮大量。無窮小和無窮大是從極限的角度考慮,指在n 某個點時,數列或函式取值大小,無窮小即趨於0,無窮大即趨於無窮。擴充套件資料 無窮小量是數學分析中的一個概念,在經典的微積分或數學分析中,...
求極限時,什麼時候使用無窮小和無窮大的關係來求極限呢
首先你要看看 極限是什麼型別的,你這道題顯然是常數 無窮小的情形,那麼這道回題就直接無極限了答 如果是無窮比上無窮的那種情形,那麼你看分子分母無窮大的項的次數,以次數最高為準,分子分母同時除以這個最高次的因子 如果是無窮小比上無窮小的情形,那麼你看分子分母次數最小的那個,分子分母同時除以這個因子即可...