1樓:娛樂大潮咖
1、利用行列式定義直接計算:
行列式是由排成n階方陣形式的n²個數aij(i,j=1,2,...,n)確定的一個數,其值為n!項之和。
2、利用行列式的性質計算:
3、化為三角形行列式計算:
若能把一個行列式經過適當變換化為三角形,其結果為行列式主對角線上元素的乘積。因此化三角形是行列式計算中的一個重要方法。
化三角形法是將原行列式化為上(下)三角形行列式或對角形行列式計算的一種方法。這是計算行列式的基本方法重要方法之一。因為利用行列式的定義容易求得上(下)三角形行列式或對角形行列式的性質將行列式化為三角形行列式計算。
原則上,每個行列式都可利用行列式的性質化為三角形行列式。但對於階數高的行列式,在一般情況下,計算往往較繁。因此,在許多情況下,總是先利用行列式的性質將其作為某種保值變形,再將其化為三角形行列式。
2樓:我是醜女沒人娶
1、二階行列式、三階行列式的計算,樓主應該學過。但是不能用於四階、五階、、、
2、四階或四階以上的行列式的計算,一般來說有兩種方法。
第一是按任意一行或任意一列:
a、任意一行或任意一列的所有元素乘以刪除該元素所在的行和列後的剩餘行列式,
b、將他們全部加起來;
c、在加的過程中,是代數式相加,而非算術式相加,因此有正負號出現;
d、從左上角,到右下角,「+」、「-」交替出現。
上面的,要一直重複進行,至少到3×3出現。
3、如樓上所說,將行列式化成三角式,無論上三角,或下三角式,最後的答案都是
等於三角式的對角線上(diagonal)的元素的乘積。
3樓:彭飛傑
用定義算很麻煩,一般都是化成上三角或者下三角算
4樓:匿名使用者
重新複習下線性代數課本,不懂問人
怎麼計算行列式的值???
5樓:是你找到了我
1、利用行列式定義直接計算。
2、利用行列
式的七大性質計算。
3、化為三角形行列式 :若能把一個行列式經過適當變換化為三角形,其結果為行列式主對角線上元素的乘積。因此化三角形是行列式計算中的一個重要方法。
4、降階法:按某一行(或一列)行列式,這樣可以降低一階,更一般地是用拉普拉斯定理,這樣可以降低多階,為了使運算更加簡便,往往是先利用列式的性質化簡,使行列式中有較多的零出現,然後再。
6樓:匿名使用者
類似的高斯消元。。
。。可以通過。。。
比如。第一行為主元,a11
以下第i行aij減去ai1/a11*a1j。。。。
(行列式中,把某一行的所有對應元素乘以某一個數加到另一行上面去,行列式值不變)
然後把第一列化成0
同理。。。可以把左下角的數字全部化成0.。。。
比如 1 -1 0 2
0 -1 -1 2
-1 2 -1 0
2 1 1 0
-》1 -1 0 2
0 -1 -1 2
0 1 -1 2
0 3 1 -4
-》1 -1 0 2
0 -1 -1 2
0 0 -2 4
0 0 -2 2
-》1 -1 0 2
0 -1 -1 2
0 0 -2 4
0 0 0 -2
然後變成三角形行列式,直接將對角線數字乘起來就行了。。
原式=-1×-2×-2=-4
還有,如果aii=0
可以利用「交換行列式兩行(列),行列式變號」
將主元變成非0
當然還有很多行列式的性質,建議看中國人民大學出版社的《線性代數》一書。
7樓:化凍
將第一行乘以2加到第二行、將第一行乘以3/2加到第三行,將第一行加到第四行,得到
-2 2 -4 0
0 3 -5 5
0 4 -8 -3
0 2 1 1
按第一列得
行列式3 -5 5
4 -8 -3
2 1 1
乘以-2,
下面就簡單了。
8樓:匿名使用者
找本書看看,線性代數的書。看書容易一點,這裡不好寫。
四階行列式怎麼計算?
9樓:洋依然陰義
四階行列式是有公式的,但是非常繁瑣、
高階行列式通常還是將其化為上三角或者下三角,對角線元的乘積即為所求;、
以上題為例;32
-12-2-131
-2-141
-4-423
第一行乘以2/3,加到2、3行。第一行乘以4/3,加到第四行。
然後第二行乘以-1,加到第三行。第二行乘以4,加到第四行。
第三行乘以-10,加到第四列。
化為:32-1
201/37/3
7/3001
0000
15行列式值即為:3*1/3*1*15=15有點麻煩了。不過方法還是沒錯的
10樓:匿名使用者
四階行列式的計算規則
11樓:會飛的小兔子
四階行列式的計算方法:
第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化為1 2 3 4
1 3 4 1
1 4 1 2
1 1 2 3
第2步:第1行乘 -1 加到其餘各行,得
1 2 3 4
0 1 1 -3
0 2 -2 -2
0 -1 -1 -1
第3步:r3 - 2r1,r4+r1,得
1 2 3 4
0 1 1 -3
0 0 -4 4
0 0 0 -4
所以行列式 = 10* (-4)*(-4) = 160。
擴充套件資料四階行列式的性質
1、在 n 維歐幾里得空間中,行列式描述的是一個線性變換對「體積」所造成的影響。
2、行列式a等於其轉置行列式at(at的第i行為a的第i列)。
3、四階行列式由排成n階方陣形式的n²個數aij(i,j=1,2,...,n)確定的一個數,其值為n。
4、四階行列式中k1,k2,...,kn是將序列1,2,...,n的元素次序交換k次所得到的一個序列,σ號表示對k1,k2,...
,kn取遍1,2,...,n的一切排列求和,那麼數d稱為n階方陣相應的行列式。
12樓:
高階行列式的計算首先是要降低階數。
對於n階行列式a,可以採用按照某一行或者某一列展開的辦法降階,一般都是第一行或者第一列。因為這樣符號好確定。這是總體思路。
當然還有許多技巧,就是比如,把行列式中儘量多出現0,比如:
2 -3 0 2
1 5 2 1
3 -1 1 -1
4 1 2 2
=#把第二行分別乘以-2,-3,-4加到第1、3、4行0 -13 -4 0
1 5 2 1
0 -16 -5 -4
0 -19 -6 -2
=整理一下
1 5 2 1
0 13 4 0
0 16 5 4
0 19 6 2
=把第四行乘以-2加到第三行
1 5 2 1
0 13 4 0
0 -22 -7 0
0 19 6 2
=按照第一列
13 4 0
-22 -7 0
19 6 2
=按照最後一列
13 4
22 7 *(-2)
=【13*7-22*4】*(-2)
=-6不知道算得對不對
13樓:我是一個麻瓜啊
簡單地說,行列式
的主要功能體現在電腦科學中
現在數學課上學習行列式,就是為了讓我們理解一些計算原理我先講行列式怎麼計算吧
二階行列式(行列式兩邊的豎線我不會打,看得懂就行):
a b
c d
它的值就等於ad-bc,即對角相乘,左上-右下的那項為正,右上-左下的那項為負
三階行列式:
a b c
d e f
g h i
它的值等於aei+bfg+cdh-afh-bdi-ceg,你在紙上用線把每一項裡的三個字母連起來就知道規律了
計算機就是用行列式解方程組的
比如下面這個方程組:
x+y=3
x-y=1
計算機計算的時候,先計算x,y係陣列成的行列式d:
1 1
1 -1
d=-2
然後,用右邊兩個數(3和1)分別代替x和y的係數得到兩個行列式dx和dy:
3 1
1 -1
dx=-4
1 3
1 1
dy=-2
用dx除以d,就是x的值,用dy除以d,就是y的值了
14樓:callme阿爸
以我寫題的經驗來講,計算四階行列式的前提要了解並利用定理和行列式的基本性質。
如1 2 3 4
0 7 8 9
3 6 9 12
1 4 7 8
先使用性質,如r3-3r1 r行 c列,這個大家應該都明白噹噹噹當~~
行列式就變成了:
1 2 3 4
0 7 8 9
0 0 0 0
1 4 7 8
然後就是定理的使用(當然也可以進一步化簡,這就看自個了?)a11×a11+a12×a12+a13×a13+a14×a14=1*0+2*0+3*0+4*0=0
就像餘子式、代數餘子式我就不講了~
嘻嘻~~
15樓:暴瓏寒訪曼
c1+c2+c3+c4
(各列都加到第1列)
a+3111
a+3a11
a+31a1
a+311a
r2-r1,r3-r1,r4-r1
(各行都減第1行)
a+3111
0a00
00a0
000a
行列式=
(a+3)a^3.
16樓:匿名使用者
先約定保值初等變換記號:「3行×a加入2行」記為:(a)3r2.
2 -3 o 2
1 5 2 1
3 -1 1 -1
4 1 2 2
用:[(-3)3r1.(5)3r2,(1)3r4]= -7 0 -3 5
16 0 7 -4
3 -1 1 -1
7 0 3 1
按第2列展開。
= -7 -3 5
16 7 -4
7 3 1
用[(-5)3r1.(4)3r2]
= -42 -18 0
44 19 0
7 3 1
按第3列。
= -42 -18
44 19
=(-42)×19-44×(-18)
=-6.
17樓:遇好慕賓閎
像二階三階一平用行列式的定義(多項求和)去算顯示是麻煩的很,而且很容易弄亂出錯
所以只能用初等變換的方法,把行列式化成上三角(或下三角,一般用上三角)求解
18樓:匿名使用者
四階行列式怎麼求,四階行列式到底應該怎麼解
19樓:
用行列式的性質如:交換兩列(行),等於乘-1,一行(列)乘以常數加到另一行(列)性質不變,這樣就能化簡為下半部分全部為零的行列式,行列式的值就等於對角線上的數值相乘。最後等於-6
20樓:匿名使用者
將最小的數提前
1 5 2 1
2-3 0 2
3 -1 1 -1
4 1 2 2
第1 行
倍數減去各行
1 5 2 1
0 13 4 0(2倍)
0 16 5 4 (3倍)
0 19 6 2(4倍)
第2 行倍數減去3,4 行
1 5 2 1
0 13 4 0
0 0 * *(16/13 倍)
0 0 * *(19/13 倍)
依次下去,直至變為
1 5 2 1
0 13 4 0
0 0 * *
0 0 0 *
的形式。對角線之積就是結果
行列式計算,行列式是如何計算的?
1 2 r1 r3 r1 rn r1 ri 表示第 i 行 基本性質 某行加另一行乘一個常數,值不變 dn x1 a x2 x3 xn 這是 爪型 行列式 a a 0 0 a 0 a 0 a 0 0 a 2 c1 c2 c3 cn cj 表示第 j 列 也是利用基本性質對行列式變形,變成 上三角 a...
行列式的計算,一個行列式的計算
第1步 把 bai2,3,4列加到第1 列,提出 du第1列公因子zhi 10,化為 1 2 3 4 1 3 4 1 1 4 1 2 1 1 2 3 第dao2步 第1行乘 1 加到內其餘各行,得1 2 3 4 0 1 1 3 0 2 2 2 0 1 1 1 第3步 r3 2r1,r4 r1,得1 ...
計算行列式
解 將第1行依次與第2,3,n行交換,一直交換到第n行。a n 1 a 1 n 1 a n n 1 a n a 1 n a n n 將第1行依次與第2,3,n 1行交換,一直交換到第n 1行。a n 2 a 1 n 2 a n n 2 a n 1 a 1 n 1 a n n 1 a n a 1 n ...