求不定積分ex22dx求ex22dx

2021-03-05 09:21:55 字數 6286 閱讀 6201

1樓:116貝貝愛

結果如下圖:

解題過程如下(因有專有公式,故只能截圖):

求函式積分的方法:

設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c。

∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。

若f(x)在[a,b]上恆為正,可以將定積分理解為在oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。

函式的積分表示了函式在某個區域上的整體性質,改變函式某點的取值不會改變它的積分值。對於黎曼可積的函式,改變有限個點的取值,其積分不變。

對於勒貝格可積的函式,某個測度為0的集合上的函式值改變,不會影響它的積分值。如果兩個函式幾乎處處相同,那麼它們的積分相同。

如果對f中任意元素a,可積函式f在a上的積分總等於(大於等於)可積函式g在a上的積分,那麼f幾乎處處等於(大於等於)g。

2樓:餘歌

如果是從負無窮到正無窮積分,可以用標準正態分佈推導,結果是√π

3樓:wteya小童鞋

標準正態分佈密度就可以反推。

4樓:high領航

用二重積分轉化為極座標形式求解,在0到正無窮大值為√π/2

求∫e^(-x^2/2)dx

5樓:demon陌

此題中∫e^(x^2)dx 是超越積分(不可積積分),它的原函式是非常規的。

結果  ∫e^(x^2)dx=1/2 √π erfi(x) + c

注:其中erfi(x)是引入的函式, 它為 x的(餘)誤差函式,無法取值 。

6樓:匿名使用者

歡迎採納,不要點錯答案哦╮(╯◇╰)╭

沒有初等原函式

歡迎採納,不要點錯答案哦╮(╯◇╰)╭

7樓:匿名使用者

這個問題屬於所謂「可積但積不出來」,意思是e^(-x^2/2)的原函式存在但不是初等函式。

8樓:匿名使用者

這是超越積分,不能用初等函式表示。也就是不可積。

9樓:匿名使用者

這是超越積分,不能用初等函式表示。

10樓:匿名使用者

e^(x^2);e^(1/x);sin(1/x);sin(x^2);sin(1/x);sinx/x;這幾個積分 貌似都不要求掌握

求積分∫e^(-x^2/2) dx

11樓:116貝貝愛

^^結果為:b/2 = √π /2

解題過程如下:

設原積分等於a

∵  b= ∫ e^(-x^2)dx 積分割槽間為負無窮到正無窮

∵ b= ∫ e^(-y^2)dy 積分割槽間為負無窮到正無窮

又,被積函式e^(-x^2)在正負無窮上偶函式

∴a=b/2

∴b^2= (∫ e^(-x^2)dx)*(∫ e^(-y^2)dy) = ∫ ∫ e^(-(x^2+y^2))dx dy

將上述積分化到極座標中

∴ x^2+y^2=r^2

∫ ∫ e^(-(x^2+y^2))dx dy = ∫ ∫ r e^(-r^2)dr dθ r從0到正無窮,θ從0到2π

= ∫ 1/2 dθ θ從0到2π= π

∴b=√π

∴b/2 = √π /2

求函式積分的方法:

設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c。

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。

若f(x)在[a,b]上恆為正,可以將定積分理解為在oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。

積分的一個嚴格的數學定義由波恩哈德·黎曼給出。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。

路徑積分是多元函式的積分,積分的區間不再是一條線段(區間[a,b]),而是一條平面上或空間中的曲線段;在面積積分中,曲線被三維空間中的一個曲面代替。對微分形式的積分是微分幾何中的基本概念。

如果一個函式的積分存在,並且有限,就說這個函式是可積的。一般來說,被積函式不一定只有一個變數,積分域也可以是不同維度的空間,甚至是沒有直觀幾何意義的抽象空間。

12樓:特特拉姆咯哦

^∫e^(x^2)dx

=(1/2)∫e^(x^2)dx^2

令x^2=t

=(1/2)∫e^tdt

=(e^t)/2

=[e^(x^2)]/2

擴充套件資料:

不定積分

的積分公式主要有如下幾類:含ax+b的積分、含√(a+bx)的積分、含有x^2±α^2的積分、含有ax^2+b(a>0)的積分、含有√(a²+x^2) (a>0)的積分、含有√(a^2-x^2) (a>0)的積分、含有√(|a|x^2+bx+c) (a≠0)的積分、含有三角函式的積分、含有反三角函式的積分、含有指數函式的積分、含有對數函式的積分、含有雙曲函式的積分。

13樓:飲水蒹葭

這是高斯積分公式,

這個貌似沒有原函式,它最開始是用雙重積分算出來的

14樓:匿名使用者

這個積分是沒有定積分的,還記得正態分佈的密度函式嗎?如果題目中積分的區間為已知的常數或無窮時,帶入正態分佈密度函式f(u,t平方)=1/(t*根號(2pi))*e^(-((x-u)^2)/(t^2)),u為期望值,t為標準差,按照上題,積分函式為f(0,2),若積分割槽間[a,b],設正態分佈函式為f(x),

原式=根號(2*pi*t平方)*(f(b)-f(a))=根號(2*pi*2)*(f(b)-f(a)), 其中記住特殊值f(正無窮)-f(負無窮)=1 , f(正無窮)-f(0)=f(0)-f(負無窮)=0.5

15樓:宸星周

^^提供以下過程求解indefinite integral(不定積分)

供參考(方法相同)

first, you need to separate the fraction:

∫ (e^x +1) / (e^x -1) dx = ∫ (e^x / (e^x -1) + 1 / (e^x -1)) dx

. . .

. . .

. . .

. . .

. . .

. = ∫ e^x / (e^x -1) dx + ∫ 1 / (e^x -1) dx

for first integral use substitution:

u = e^x -1

du = e^x dx

for second integral use substitution:

t = e^x

dt = e^x dx

dx = dt/e^x = dt/t

∫ (e^x +1) / (e^x -1) dx = ∫ 1/u du + ∫ 1 / ((t-1)t) dt

. . .

. . .

. . .

. . .

. . .

. = ∫ 1/u du + ∫ (1/(t-1) - 1/t) dt . .

. . using partial fractions

. . .

. . .

. . .

. . .

. . .

. = ∫ 1/u du + ∫ 1/(t-1) dt - ∫ 1/t dt

. . .

. . .

. . .

. . .

. . .

. = ln(u) + ln(t-1) - ln(t) + c

substituting back we get:

∫ (e^x +1) / (e^x -1) dx = ln(e^x -1) + ln(e^x -1) - ln(e^x) + c

. . .

. . .

. . .

. . .

. . .

. = ln(e^x -1) -½ ln(e^x) + ln(e^x -1) - ½ ln(e^x) + c

. . .

. . .

. . .

. . .

. . .

. = 2 (ln(e^x -1) -½ ln(e^x)) + c

. . .

. . .

. . .

. . .

. . .

. = 2 (ln(e^x -1) - ln(e^(x/2))) + c

. . .

. . .

. . .

. . .

. . .

. = 2 ln((e^x -1)/e^(x/2)) + c

. . .

. . .

. . .

. . .

. . .

. = 2 ln(e^(x/2) -e^(-x/2)) + c

16樓:匿名使用者

可通過概率求解,e^(-x^2/2)可看作正態分佈中均值為0,方差為1.現用a作為均值,b作為方差,求該式積分,即先求x=下限,x=上線的正態分佈概率,再乘以√((2π))*b。

17樓:匿名使用者

在matlab中求解:

>> syms x

>> int(exp((-x^2/2)))ans =

(2^(1/2)*pi^(1/2)*erf((2^(1/2)*x)/2))/2

求不定積分∫e^(-x^2)dx

18樓:匿名使用者

^設a=∫e^(-x^2)dx ,則有

a^2=∫e^(-x^2)dx ∫e^(-y^2)dy=∫∫e^(-x^2-y^2)dxdy=∫∫e^(-r^2)dxdy(取極座標r^2=x^2+y^2)

=2π∫e^(-r^2)rdr=π∫e^(-r^2)dr^2=-πe^(-r^2),

即有a=(√π)e^(-r^2/2),r的取值參考x的定義域。

19樓:匿名使用者

求不定積分∫e^(-x^2)dx

解:原式=∫[1-x²+(x^4)/2!-(x^6)/3!+(x^8)/4!-.......]dx

=x-x³/3+(x^5)/(5×

2!)-(x^7)/(7×3!)+(x^9)/(9×4!)-........+c

20樓:公主裹兒

這個不定積分在初等函式裡面不存在,也就是用初等函式不能表示。

21樓:匿名使用者

^^^∫e^(-x^2)dx=(-1/2)∫de^(-x^2)/x=(-1/2)e^(-x^2)/x -(1/2)∫e^(-x^2)dx/x^2

=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3+(1/4)∫e^(-x^2)d(1/x^3)

=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)∫e^(-x^2)d(1/x^4)

x^2=t ∫e^(-x^2)d(1/x^4)

=∫e^(-t)d(1/t^2)=e^(-t)/t^2+∫e^(-t)dt/t^2=e^(-t)/t^2-e^(-t)/t-∫e^(-t)dt/t

e^x=1+x+x^2/2!+x^3/3!+x^4/4!+..+x^n/n!

e^(-t)=1+(-t)+(-t)^2/2!+(-t)^3/3!+..+(-t)^n/n!

∫e^(-t)dt/t=lnt-t -t^2/(2*2!)-t^3/(3*3!)-..-t^n/(n*n!)

所以∫e^(-x^2)dx=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)e^(-x^2)/x^4-(1/8)e^(-x^2)/x^2-(1/8)[ln(x^2)-x^2-(x^2)^2/(2*2!)-(x^2)^3/(3*3!)-..

-(x^2)^n/(n*n!)]

求不定積分e2x1ex

原式 e x 1 e x d e x 1 1 1 e x d e x e x ln 1 e x c 第一題 e 2x 1 1 e x dx e x 1 e x 1 1 e x dx e x 1 dx e x x c 第二題 專 21 1 x dx 令x t dx 2t dt 42t 1 t dt 4...

求不定積分2 x 2 dx,求不定積分 a 2 x 2 dx

三角換元脫根號,令x 2tanu,2 secudtanu secutanu ln secu tanu ln 2 c x 2 x 2 ln 2 x x c 三角換元脫根號,令x 2tanu,2 secudtanu 求不定積分 a 2 x 2 dx 令dux atanz dx asec z dz 原式z...

求不定積分xlnx1dx,求不定積分xln1xdx

xln x2 1 dx 1 2 ln x2 1 dx 2 1 2 x 2ln x 2 1 x 2 2x 1 x 2 dx 1 2 x 2ln x 2 1 2 x 2 1 x x 1 x 2 dx 1 2 x 2ln x 2 1 2 xdx 2 x 1 x 2 dx 1 2 x 2ln x 2 1 x...