不定積分x1x2x21dx

2021-03-06 23:49:04 字數 5249 閱讀 6273

1樓:demon陌

^∫1/[x√(x^2-1)]dx

=∫(1/x^2)/[√(x^2-1)/x]dx=∫(1/x^2)dx/√[1-(1/x)^2]= -∫d(1/x)/√[1-(1/x)^2]= -arcsin(1/x)+c

其中c為任意常數

連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

2樓:不是苦瓜是什麼

^^^解:令x=tant,則x^2+1=(tant)^2+1=(sect)^2。那麼

∫dx/x^2√(x^2+1)

=∫1/((tant)^2*sect)dtant

=∫(sect)^2/((tant)^2*sect)dt

=∫sect/(tant)^2dt

=∫cost/(sint)^2dt

=∫1/(sint)^2dsint

=-1/sint+c

又tant=x,則sint=x/√(x^2+1)

因此∫dx/x^2√(x^2+1)

=-1/sint+c=-√(x^2+1)/x+c

不定積分的公式

1、∫ a dx = ax + c,a和c都是常數

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1

3、∫ 1/x dx = ln|x| + c

4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + c

6、∫ cosx dx = sinx + c

7、∫ sinx dx = - cosx + c

8、∫ cotx dx = ln|sinx| + c = - ln|cscx| + c

9、∫ tanx dx = - ln|cosx| + c = ln|secx| + c

10、∫ secx dx =ln|cot(x/2)| + c

= (1/2)ln|(1 + sinx)/(1 - sinx)| + c

= - ln|secx - tanx| + c

= ln|secx + tanx| + c

3樓:快樂男孩

令x=sect ds=sect*tantdt√x2-1=√sect2-1=tanx(三角代換)∫sect+1/sect2*tant *sect*tantdt=∫(1/sect +1)dt

=∫(cost+1)dt

=t+sint+c

然後把t帶入

tant=√x2-1 則sint=cost*√x2-1因為x=sect=1/cost 所以cost=1/x又因為cost=1/x 所以 t=arccos1/x原式=t+sint+c

=arccos1/x + √x2-1/x +c

4樓:匿名使用者

令x=tanu,則dx=sec²udu,√(x^2+1)=secu∫dx/x^2√(x^2+1)

=∫ sec²u/[(tan²u)secu] du=∫ cosu/sin²u du

=∫ 1/sin²u d(sinu)

=-1/sinu+c

由tanu=x得:sinu=x/√(x²+1)=-√(x²+1)/x+c

5樓:嘿嘿嘿哈

沒有問題,acrsinx和arccosx的關係是相加等於pi/2,而pi/2是可以寫進常數c中的

6樓:匿名使用者

||∫ dx/[x√(1+x2)], x=tanz,dx=sec2zdz,z∈(π/2,π/2) sinz=x/√(1+x2),cosz=1/√(1+x2) 原式= ∫ sec2z/tanz*secz] dz = ∫ (1/cosz * cosz/sinz) dz = ∫ cscz dz= ln|cscz - cotz| + c = ln|√(1+x2)/x - 1/x| + c = ln|√(1+x2) - 1| - ln|x| + c

求不定積分∫x/√(1+x-x^2)dx

7樓:等待楓葉

|不定積分∫x/(x^2-x-2 )dx的結果為2/3*ln|x-2|+1/3ln|x+1|+c。

解:因為x/(x^2-x-2)=x/((x-2)*(x+1)),

令x/((x-2)*(x+1))=a/(x-2)+b/(x+1)=(ax+a+bx-2b)/((x-2)*(x+1)),

可得a=2/3,b=1/3。那麼,

∫x/(x^2-x-2)dx

=∫x/((x-2)*(x+1))dx

=∫(2/(3*(x-2))+1/(3*(x+1)))dx

=2/3*∫1/(x-2)dx+1/3∫1/(x+1)dx

=2/3*ln|x-2|+1/3*ln|x+1|+c

擴充套件資料:

1、因式分解的方法

(1)十字相乘法

對於x^2+px+q型多項式,若q可分解因數為q=a*b,且有a+b=p,那麼可應用十字相乘法對多項式x^2+px+q進行因式分解。

x^2+px+q=(x+a)*(x+b)

(2)公式法

平方差公式,a^2-b^2=(a+b)*(a-b)。

完全平方和公式,a^2+2ab+b^2=(a+b)^2。

完全平方差公式,a^2-2ab+b^2=(a-b)^2。

2、不定積分湊微分法

通過湊微分,最後依託於某個積分公式。進而求得原不定積分。

例:∫cos3xdx=1/3∫cos3xd(3x)=1/3sin3x+c

直接利用積分公式求出不定積分。

3、不定積分公式

∫mdx=mx+c、∫1/xdx=ln|x|+c、∫cscxdx=-cotx+c

8樓:寂寞的楓葉

^∫x/(x^2-2ax+1)dx的不定積分為1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

解:∫x/(x^2-2ax+1)dx

=1/2*∫(2x-2a+2a)/(x^2-2ax+1)dx

=1/2*∫(2x-2a)/(x^2-2ax+1)dx+∫a/(x^2-2ax+1)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+∫a/(x^2-2ax+1)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+a*∫1/((x-a)^2+1-a^2)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

=1/2*ln|(x^2-2ax+1|+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

令(x-a)/√(1-a^2)=tant,則x=√(1-a^2)*tant+a,那麼

∫1/(((x-a)/√(1-a^2))^2+1)dx

=∫1/(sect)^2d(√(1-a^2)*tant+a)

=√(1-a^2)*∫(sect)^2/(sect)^2dt

=√(1-a^2)*∫1dt

=√(1-a^2)*t+c

又(x-a)/√(1-a^2)=tant,則t=arctan((x-a)/√(1-a^2)),則

∫1/(((x-a)/√(1-a^2))^2+1)dx

=√(1-a^2)*t+c

=√(1-a^2)*arctan((x-a)/√(1-a^2))+c

所以∫x/(x^2-2ax+1)dx

=1/2*ln|(x^2-2ax+1|+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

=1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

即∫x/(x^2-2ax+1)dx的不定積分為:

1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

擴充套件資料:

1、不定積分的公式型別

(1)含ax^2±b的不定積分

∫(1/(a*x^2+b))=1/√(a*b)*arctan(√a*x/√b)+c

(2)含a+bx的不定積分

∫(1/(ax+b))=1/b*ln|ax+b|+c、∫(x/(ax+b))=1/b^2*(a+bx-aln|ax+b|)+c

(3)含x^2±a^2的不定積分

∫(1/(x^2+a^2))=1/a*arctan(x/a)+c、∫(1/(x^2-a^2))=1/(2a)*ln|(x-a)/(x+a)|+c

2、不定積分的求解方法

(1)換元積分法

例:∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)+c

(2)積分公式法

例:∫e^xdx=e^x、∫1/xdx=ln|x|+c、∫cosxdx=sinx+c

(3)分部積分法

例:∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx=x*e^x-e^x=(x-1)*e^x

3、常用的積分公式

∫(secx)^2dx=tanx+c、∫1/(x^2+x+1)d(x^2+x+1)=ln|x^2+x+1|+c、積分5dx=5x+c

9樓:我的我451我

被積函式是分數形式一般要拆分,怎麼拆必須公式要熟。

∫x/(x^2-x-2 )dx=∫x/[(x-2)(x+1)]dx=∫[1/(x+1)+2/(x-2 )(x+1)]dx

=∫[1/(x+1)+2/3*[1/(x-2 )-1/(x+1)]dx=∫[1/3(x+1)+2/3(x-2 )]dx

=1/3*ln(x+1)+2/3*ln(x-2)+c   c為常數

拆分規則:在有意義的情況下,是任何一個賦值都會滿足的。

因為本身有理式的拆分就是一個恆等式求解的過程,也就是設a(x)=a(x),那麼你無論給左右兩邊取什麼值,只要這個值在a(x)的定義域內,該等式一定成立的。

而且如果不採用賦值法的話,就直接進行同分,最後我們用到的定理叫做多項式恆等定理,效果是一樣的。

10樓:匿名使用者

顯然[1+√(1+x)] *[1-√(1+x)]=1 -1- x= -x

於是得到∫x/[1+√(1+x)]dx

=∫ -1+ √(1+x) dx

代入基本公式∫x^n dx=1/(n+1) *x^(n+1)原積分= -x +2/3 *(1+x)^(3/2) +c,c為常數

1 x 6 dx不定積分,1 1 x 6 dx不定積分

1 1 x 6 dx不定積分求法如下 求不定積分的方法 第一類換元其實就是一種拼湊,利用f x dx df x 而前面的剩下的正好是關於f x 的函式,再把f x 看為一個整體,求出最終的結果。用換元法說,就是把f x 換為t,再換回來 分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數...

求不定積分x21xx2dx

這道題的計算不是一般的繁瑣,思路是這個思路,過程不敢保證一定不會出錯,你自己的練習,你還是自己檢查一下吧。詳細過程如圖,希望能幫到你解決你的問題 希望過程清晰明白 不定積分 x 1 x 2 x 2 1 dx 1 x x 2 1 dx 1 x 2 x 2 1 x dx 1 x 2 dx 1 1 x 2...

求不定積分2 x 2 dx,求不定積分 a 2 x 2 dx

三角換元脫根號,令x 2tanu,2 secudtanu secutanu ln secu tanu ln 2 c x 2 x 2 ln 2 x x c 三角換元脫根號,令x 2tanu,2 secudtanu 求不定積分 a 2 x 2 dx 令dux atanz dx asec z dz 原式z...