1樓:韓苗苗
∫ 1/sinx dx
= ∫ cscx dx
= ∫ cscx * (cscx - cotx)/(cscx - cotx) dx
= ∫ (- cscxcotx + csc²x)/(cscx - cotx) dx
= ∫ d(cscx - cotx)/(cscx - cotx)
= ln|抄cscx - cotx| + c
擴充套件資料
設f(x)是函式f(x)的一個
原函式,函式f(x)的所有原函式f(x)+ c(其中,c為任意常數)叫做函式f(x)的不定積分,又叫做函式f(x)的反導數,記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=f(x)+c。
∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數或積分常量,求已知函式的不定積分的過程叫做對這個函式進行不定積分。
2樓:匿名使用者
本題有多種做法,結果可能不太一樣,但可以驗證,不同的結果之間最多相差一個常數.
3樓:匿名使用者
||∫1/sinx dx
=∫1/[2sin(x/2)cos(x/2)] dx,兩倍角公式=∫1/[sin(x/2)cos(x/2)] d(x/2)=∫1/tan(x/2)*sec²(x/2) d(x/2)=∫1/tan(x/2) d[tan(x/2)], [注∫sec²(x/2)d(x/2)=tan(x/2)+c]
=ln|tan(x/2)|+c, (答案一)進一步化內簡:
=ln|sin(x/2)/cos(x/2)|+c=ln|2sin(x/2)cos(x/2)/[2cos²(x/2)]|+c,湊出容兩倍角公式
=ln|sinx/(1+cosx)|+c
=ln|sinx(1-cosx)/sin²x|+c=ln|(1-cosx)/sinx|+c
=ln|cscx-cotx|+c, (答案二)
4樓:匿名使用者
一種更快的方法,嘿嘿
2sinx 3cosx的不定積分
解 cosx 2sinx 3cosx dx cosx 13 2 13 sinx 3 13 cosx dx 令cos 2 13 則sin 3 13 上式 cosx 13 sin x dx 誘導公式 cos x 13 sin x dx cos x cos sin x sin 13 sin x dx 2 ...
根號下1 sinx 根號下1 sinx根號3,求cos(x 180)sin(x 180)
解 cos x 180 sin x 180 1 2 sin 2x 360 1 2 sin2x 又因為 1 sinx 1 sinx 3兩邊平方 1 sinx 1 sinx 2 1 sin2x 3解得 cosx 1 2 x 60 或120 當x 60時 cos x 180 sin x 180 1 2 s...
不定積分1 2 sinx ,求 1 2 sinx dx的不定積分
結果為 2 3 3 arctan c 解題過程如下 因有專有公式,故只能截圖 求函式積分的方法 設f x 是函式f x 的一個原函式,我們把函式f x 的所有原函式f x c c為任意常數 叫做函式f x 的不定積分,記作,即 f x dx f x c。其中 叫做積分號,f x 叫做被積函式,x叫做...