1樓:特特拉姆咯哦
∫復1/tanx dx
=∫cosx/sinx dx
=∫1/sinx dsinx
=ln|sinx|+c
2樓:匿名使用者
你題目bai少了一個括號
dui=∫1/(
zhi1+tanx)dx
=∫cosx/(sinx+cosx)dx
要求i,設
j=∫sinx/(sinx+cosx)dxi+j=x+c1任意dao常數版
i-j=∫(cosx-sinx)/(sinx+cosx)dx=∫1/(sinx+cosx)d(sinx+cosx)=ln(sinx+cosx)+c2任意常
數所以權i=x/2+1/2*ln(sinx+cosx)+c
求1/[(tanx)平方]的不定積分
3樓:我是一個麻瓜啊
^∫1/[(tanx)2]dx=-cotx-x+c。c為積分常數。
解答過程如下:
∫1/[(tanx)2]dx
=∫cot2xdx
=∫1+cot2xdx-∫1dx
=-cotx-x+c
擴充套件資料:常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c求不定積分的方法:
第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)。
分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)。
4樓:匿名使用者
=cotx平方的不定積分
=(1+cotx平方的不定積分)-1的不定積分=csc平方的不定積分-1的不定積分
=cotx-x+c
c為任意常數
5樓:張風富志勇
答案在**裡
向左轉|向右轉
1x2的不定積分求11x2的不定積分
解答過程如下 擴充套件資料由定義可知 求函式f x 的不定積分,就是要求出f x 的所有的原函式,由原函式的性質可知,只要求出函式f x 的一個原函式,再加上任意的常數c就得到函式f x 的不定積。全體原函式之間只差任意常數c 證明 如果f x 在區間i上有原函式,即有一個函式f x 使對任意x i...
求不定積分xlnx1dx,求不定積分xln1xdx
xln x2 1 dx 1 2 ln x2 1 dx 2 1 2 x 2ln x 2 1 x 2 2x 1 x 2 dx 1 2 x 2ln x 2 1 2 x 2 1 x x 1 x 2 dx 1 2 x 2ln x 2 1 2 xdx 2 x 1 x 2 dx 1 2 x 2ln x 2 1 x...
1 x 6 dx不定積分,1 1 x 6 dx不定積分
1 1 x 6 dx不定積分求法如下 求不定積分的方法 第一類換元其實就是一種拼湊,利用f x dx df x 而前面的剩下的正好是關於f x 的函式,再把f x 看為一個整體,求出最終的結果。用換元法說,就是把f x 換為t,再換回來 分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數...