均值不等式的使用條件

2021-03-11 01:40:15 字數 1162 閱讀 4348

1樓:匿名使用者

均值不等式抄的使用條件襲:

一正:數字首先要都大於零,兩數為正

二定:數字之

間通過加或乘可以有定值出現,乘積為定值——可以不是具體的數字,但在題目中必須是不變的量;

三相等:檢驗等號是不是取得到,當且僅當兩數相等才有不等式的等號成立,一般第三步很容易被忽略,因此這也是均值不等式的易錯點之一。

用均值不等式求函式的最值,在具體求解時,應注意考查下列三個條件:

1、函式的解析式中,各項均為正數;

2、函式的解析式中,含變數的各項的和或積必須有一個為定值;

3、函式的解析式中,含變數的各項均相等,取得最值

擴充套件資料:

均值不等式的常見公式:

a^2+b^2 ≥ 2ab

√(ab)≤(a+b)/2 ≤(a^2+b^2)/2

a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+ac

a+b+c≥3×三次根號abc均值不等式,又名平均值不等式、平均不等式,是數學中的一個重要公式。

公式內容為hn≤gn≤an≤qn,即調和平均數不超過幾何平均數,幾何平均數不超過算術平均數,算術平均數不超過平方平均數。

均值不等式的四大證明方法:

1、直接歸納法

2、取對數證明法

3、排序不等式法

4、最後一個證明法

2樓:假面

一正二定三

復相等。

正:兩數為制正。

定:乘積為定值——可以不是具體的數字,但在題目中必須是不變的量。

相等:當且僅當兩數相等才有不等式的等號成立。

利用琴生不等式法也可以很簡單地證明均值不等式,同時還有柯西歸納法等等方法。

3樓:匿名使用者

使用均值不等式

bai時一定要牢記三du個步驟:zhi一正二定三相等dao!也就是說數字首專先要都大於零屬,然後他們之間通過加或乘可以有定值出現,第三就是檢驗等號是不是取得到。。

一般第三步很容易被忽略,因此這也是均值不等式的易錯點之一。如有疑問可以追問。

4樓:匿名使用者

a,b 大於0 ,a+b=m( m大於0 ), 則 m 大於等於 2根號 ab,僅當a=b 時取等號。

均值不等式應注意的條件是什麼,均值不等式是什麼

在用均值不等式求函式的最值,是值得重視的一種方法,但在具體求解時內,應注意考容查下列三個條件 1 函式的解析式中,各項均為正數 2 函式的解析式中,含變數的各項的和或積必須有一個為定值 3 函式的解析式中,含變數的各項均相等,取得最值即用均值不等式求某些函式的最值時,應具備三個條件 一正二定三取等。...

均值不等式的常用公式均值不等式的公式!

1 對實數 a,b,有a 2 b 2 2ab 當且僅當a b時取 號 a 2 b 2 0 2ab 2 對非負實數a,b,有a b 2 a b 0,即 a b 2 a b 0 3 對負實數a,b,有a b 0 2 a b 4 對實數a,b,有a a b b a b 5 對非負數a,b,有a 2 b 2...

什麼是均值不等式,均值不等式是什麼啊

均值不等式,又名平均值不等式 平均不等式,是數學中的一個重要公式 公式內容為hn gn an qn,即調和平均數不超過幾何平均數,幾何平均數不超過算術平均數,算術平均數不超過平方平均數。均值不等式是什麼啊 均值不等式是數學中的一個重要公式。公式內容為hn gn an qn,即調和平均數不超過幾何平均...