線性代數極大無關組的問題

2021-03-11 10:28:04 字數 752 閱讀 3952

1樓:兔斯基

只要是進行初等變換化為階梯型,就可以看出矩陣的秩,然後由三秩相等,可以看出行向量或列向量組中的線性無關的向量,並且其餘向量可由他們表示是顯然的。望採納

2樓:匿名使用者

呵呵,很bai

簡單啊。

先把那幾du個向量以列向zhi量的形式寫成一個矩陣,然dao

後求這個矩陣的秩,專因為屬極大無關組中向量的個數就是矩陣的秩。要求矩陣的秩當然要先把矩陣化成行簡化階梯型矩陣啦,然後看看其中的單位陣部分對應哪幾個向量,這幾個向量便是極大無關組的成員嘍~。例子如下:

求a1=(-1,-1,0,0)t a2=(1,2,1,-2)t a3=(0,1,1,-1)t a4=(1,3,2,1)t

a5=(2,6,4,-1)t 的一個極大線性無關組。

解:a=

-1 1 0 1 2

-1 2 1 3 6

0 1 1 2 4

0 -1 -1 1 -1

化簡得:

a=1 0 1 0 1

0 1 1 0 2

0 0 0 1 1

0 0 0 0 0

顯然r(a)=3.因此極大無關組有3個向量。

顯然第1,2,4列為單位矩陣部分,對應的向量為a1 a2 a4,因此此即為極大無關組。

3樓:匿名使用者

這是沒問題的,只要你是行初等變換都沒問題

線性代數方程組的問題,線性代數,線性方程組問題。

解 係數行列式 d 1 1 1 a b c bc ac ab r2 ar1,r3 bcr1 1 1 1 0 b a c a 0 c a b b a c r3 cr2 1 1 1 0 b a c a 0 0 b c a c b a b c a c 因為n元線性方程組有唯一解的充分必要條件是係數行列式d...

線性代數方程組解的結構,線性代數線性方程組的解的結構

若選項a中 a1 a2 改為 a1 a2 2,則 選a。非齊次方程組 ax b 特解是 a1 a2 2,匯出組即對應的齊次方程 ax 0 的基礎解內系是 b1.b2.b3,取任意常數 k1 k2 k3 k2 k3 k3,則 ax b 的通容解是 x k1 k2 k3 b1 k2 k3 b2 k3b3...

線性代數問題

說實話,我沒有看懂你的問題。變成了a?我這裡說下 二中黃色框裡的步驟把。因為q是一個正交矩陣,所以有q t q e,所以 q t q 1 所以 黃色框中第一步 q t a e q q t a e q q t q a e a e 然後根據黃色框上面一步的結論有,q t a e q是那麼一個對角矩陣,所...