1樓:小小芝麻大大夢
具體回答如圖:
求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數c就得到函式f(x)的不定積分。
把直角座標系上的函式的圖象用平行於y軸的直線把其分割成無數個矩形,然後把某個區間[a,b]上的矩形累加起來,所得到的就是這個函式的圖象在區間[a,b]的面積。實際上,定積分的上下限就是區間的兩個端點a,b。
擴充套件資料:
求不定積分的方法:
第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)
分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)
常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
2樓:匿名使用者
新年好!可用分部積分法如圖計算。經濟數學團隊幫你解答,請及時採納。謝謝!
計算不定積分∫xe^x²dx
3樓:不是苦瓜是什麼
∫xe^(x^2)dx
=0.5∫e^(x^2)d(x^2)
=0.5e^(x^2)+c
不定積分的公式
1、∫ a dx = ax + c,a和c都是常數2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1
3、∫ 1/x dx = ln|x| + c4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + c
4樓:古代聖翼龍
∫x·e^(x^2)dx=∫e^(x^2)·[1/2 · dx^2]=1/2∫e(x^2)d(x^2)
令x^2=μ,上式=1/2 · ∫e^μ dμ=1/2 · e^μ +c=1/2 · e^(x^2)+c
不定積分sec xdx,求不定積分, sec xdx怎麼得出括號那一步呢?
i sec xdx secxdtanx 分部積分法 tanxsecx tanxdsecx tanxsecx tan xsecxdx tanxsecx sec x 1 secxdx tanxsecx secxdx sec dx i sec dx 故2i tanxsecx secdx tanxsecx ...
求下列不定積分,求下列不定積分 sin t t
6 x 2 1 1 x 2 1 1 1 x 2 1 積分 x arctanx c 11 e 2t 1 e t 2 1 2 e t 1 e t 1 原積分項 e t 1 積分 e t t c 19 合併 根號 1 x 根號 1 x 根號 1 x 根號 1 x 根號 1 x 根號 1 x 根號 1 x ...
求不定積分xlnx1dx,求不定積分xln1xdx
xln x2 1 dx 1 2 ln x2 1 dx 2 1 2 x 2ln x 2 1 x 2 2x 1 x 2 dx 1 2 x 2ln x 2 1 2 x 2 1 x x 1 x 2 dx 1 2 x 2ln x 2 1 2 xdx 2 x 1 x 2 dx 1 2 x 2ln x 2 1 x...