討論定積分與二重積分,三重積分的共同點和不同點

2021-03-04 09:14:35 字數 5606 閱讀 7892

1樓:阿樓愛吃肉

定積分與二重積分、三重積分三者均是高等數學中的積分內容,均具有廣泛的應用。定積分與二重積分、三重積分有3點不同:

一、三者的本質不同:

1、定積分的本質:平面的面積。

2、二重積分的本質:曲頂柱體體積。

3、三重積分的本質:三重積分就是立體的質量。

二、三者的概述不同:

1、定積分的概述:定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。

2、二重積分的概述:二重積分是二元函式在空間上的積分,同定積分類似,是某種特定形式的和的極限。

3、三重積分的概述:設三元函式f(x,y,z)在區域ω上具有一階連續偏導數,將ω任意分割為n個小區域,每個小區域的直徑記為rᵢ(i=1,2,...,n),體積記為δδᵢ,||t||=max,在每個小區域內取點f(ξᵢ,ηᵢ,ζᵢ);

作和式σf(ξᵢ,ηᵢ,ζᵢ)δδᵢ,若該和式當||t||→0時的極限存在且唯一(即與ω的分割和點的選取無關),則稱該極限為函式f(x,y,z)在區域ω上的三重積分,記為∫∫∫f(x,y,z)dv,其中dv=dxdydz。

三、三者的幾何意義不同:

1、定積分的幾何意義:揭示了積分與黎曼積分本質的聯絡,可見其在微積分學以至更高等的數學上的重要地位,因此,牛頓-萊布尼茲公式也被稱作微積分基本定理。

2、二重積分的幾何意義:在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。

3、三重積分的幾何意義:當積分函式為1時,就是其密度分佈均勻且為1,質量就等於其體積值。當積分函式不為1時,說明密度分佈不均勻。

2樓:匿名使用者

定積分是求面積的,

二重、三重都是求體積的,

只不過定義上二重是通過給出面密度求體積,

而三重是通過體密度來求體積

二重和三重的主要區別就是積分域的區別,

二重積分的積分域是x、y的函式,也就是面

三重積分的積分域是x、y、z的函式,也就是體定積分:

二重積分:

三重積分:

3樓:匿名使用者

共同點:三者都可以求體積,都具有

4樓:女神也拉翔

共同點:都是積分

不同點:數字不一樣

定積分與二重積分,三重積分的區別與聯絡是什麼,急,**等 20

5樓:阿樓愛吃肉

定積分與二重積分、三重積分有3點不同

:一、三者的概述不同:

1、定積分的概述:定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。

2、二重積分的概述:二重積分是二元函式在空間上的積分,同定積分類似,是某種特定形式的和的極限。本質是求曲頂柱體體積。

重積分有著廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。

3、三重積分的概述:設三元函式f(x,y,z)在區域ω上具有一階連續偏導數,將ω任意分割為n個小區域,每個小區域的直徑記為rᵢ(i=1,2,...,n)。

體積記為δδᵢ,||t||=max,在每個小區域內取點f(ξᵢ,ηᵢ,ζᵢ),作和式σf(ξᵢ,ηᵢ,ζᵢ)δδᵢ,若該和式當||t||→0時的極限存在且唯一(即與ω的分割和點的選取無關);

則稱該極限為函式f(x,y,z)在區域ω上的三重積分,記為∫∫∫f(x,y,z)dv,其中dv=dxdydz。

二、三者的幾何意義不同:

1、定積分的幾何意義:表示平面圖形的面積。

2、二重積分的幾何意義:表示曲頂柱體體積。

3、三重積分的幾何意義:表示立體的質量。

三、三者的注意事項不同:

1、定積分的注意事項:一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。

2、二重積分的注意事項:平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。

3、三重積分的注意事項:當積分函式為1時,就是其密度分佈均勻且為1,質量就等於其體積值。當積分函式不為1時,說明密度分佈不均勻。

定積分與二重積分、三重積分均是高等數學中重要內容,其中,定積分是學習二重積分、三重積分的基礎。

6樓:高數線代程式設計狂

問題很抽象。

從變數維度區分:

一般的定積分指的一元函式積分;二重積分是二元函式的積分,三重積分是三元函式的積分。

從幾何意義來說:

一般定積分是求面積;二重積分求曲頂柱體體積,三重積分求空間封閉區域體積

7樓:她鄉的**

從應用上來說,定積分用來算曲邊梯形面積;二重積分可以算空間旋轉體的面積於體積,我覺得二重積分其實是針對旋轉體的,因為空間體是三維的,需要xyz三個座標表示,但是旋轉體的特性便是根據xy平面上的旋轉面的資料就可以推算旋轉體的體積於面積,所以就有了二重積分。比如由直角三角形繞直角邊旋轉一週得到圓錐體的體積面積計算;三重積分就是來算二重積分無法計算的非旋轉體的體積。比如三菱錐。

二重積分和三重積分的區別。。求高手解答。

8樓:匿名使用者

都是遞進關係,從一重積分開始,只說幾何意義吧。62616964757a686964616fe58685e5aeb931333332613763

一重積分(定積分):只有一個自變數y = f(x)

當被積函式為1時,就是直線的長度(自由度較大)

∫(a→b) dx = l(直線長度)

被積函式不為1時,就是圖形的面積(規則)

∫(a→b) f(x) dx = a(平面面積)

另外,定積分也可以求規則的旋轉體體積,分別是

盤旋法(disc method):v = π∫(a→b) f²(x) dx

圓殼法(shell method):v = 2π∫(a→b) xf(x) dx

計算方法有換元積分法,極座標法等,定積分接觸得多,不詳說了

∫(α→β) (1/2)[a(θ)]² dθ = a(極座標下的平面面積)

二重積分:有兩個自變數z = f(x,y)

當被積函式為1時,就是面積(自由度較大)

∫(a→b) ∫(c→d) dxdy = a(平面面積)

當被積函式不為1時,就是圖形的體積(規則)、和旋轉體體積

∫(a→b) ∫(c→d) dxdy = v(旋轉體體積)

計算方法有直角座標法、極座標法、雅可比換元法等

極座標變換:{ x = rcosθ

{ y = rsinθ

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ

三重積分:有三個自變數u = f(x,y,z)

被積函式為1時,就是體積、旋轉體體積(自由度最大)

∫(a→b) ∫(c→d) ∫(e→f) dxdydz = v(旋轉體體積)

當被積函式不為1時,就沒有幾何意義了,有物理意義等

計算方法有直角座標法、柱座標切片法、柱座標投影法、球面座標法、雅可比換元法等

極座標變化(柱座標):{ x = rcosθ

{ y = rsinθ

{ z = z

{ h ≤ r ≤ k

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(h→k) ∫(z₁→z₂) f(rcosθ,rsinθ,z) r dzdrdθ

極座標變化(球座標):{ x = rsinφcosθ

{ y = rsinφsinθ

{ z = rcosφ

{ h ≤ r ≤ k

{ a ≤ φ ≤ b、最大範圍:0 ≤ φ ≤ π

{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π

∫(α→β) ∫(a→b) ∫(h→k) f(rsinφcosθ,rsinφsinθ,rcosφ) r²sin²φ drdφdθ

所以越上一級,能求得的空間範圍也越自由,越廣泛,但也越複雜,越棘手,而

且限制比上面兩個都少,對空間想象力提高了。

重積分能化為幾次定積分,每個定積分能控制不同的伸展方向。

又比如說,在a ≤ x ≤ b裡由f(x)和g(x)圍成的面積,其中f(x) > g(x)

用定積分求的面積公式是∫(a→b) [f(x) - g(x)] dx

但是升級的二重積分,面積公式就是∫(a→b) dx ∫(g(x)→f(x)) dx、被積函式變為1了

用不同積分層次計算由z = x² + y²、z = a²圍成的體積?

一重積分(定積分):向zox面投影,得z = x²、令z = a² --> x = ± a、採用圓殼法

v = 2πrh = 2π∫(0→a) xz dx = 2π∫(0→a) x³ dx = 2π • (1/4)[ x⁴ ] |(0→a) = πa⁴/2

二重積分:高為a、將z = x² + y²向xoy面投影得x² + y² = a²

所以就是求∫∫(d) (x² + y²) dxdy、其中d是x² + y² = a²

v = ∫∫(d) (x² + y²) dxdy = ∫(0→2π) dθ ∫(0→a) r³ dr、這步你會發覺步驟跟一重定積分一樣的

= 2π • (1/4)[ r⁴ ] |(0→a) = πa⁴/2

三重積分:旋轉體體積,被積函式是1,直接求可以了

柱座標切片法:dz:x² + y² = z

v = ∫∫∫(ω) dxdydz

= ∫(0→a²) dz ∫∫dz dxdy

= ∫(0→a²) πz dz

= π • [ z²/2 ] |(0→a²)

= πa⁴/2

柱座標投影法:dxy:x² + y² = a²

v = ∫∫∫(ω) dxdydz

= ∫(0→2π) dθ ∫(0→a) r dr ∫(r²→a²) dz

= 2π • ∫(0→a) r • (a² - r²) dr

= 2π • [ a²r²/2 - (1/4)r⁴ ] |(0→a)

= 2π • [ a⁴/2 - (1/4)a⁴ ]

= πa⁴/2

三重積分求體積時能用的方法較多,就是所說的高自由度。

既然都說了這麼多,再說一點吧:

如果再學下去的話,你會發現求(平面)面積、體積 比 求(曲面)面積的公式容易

學完求體積的公式,就會有求曲面的公式

就是「曲線積分」和「曲面積分」,又分「第一類」和「第二類」

當被積函式為1時,第一類曲線積分就是求弧線的長度,對比定積分只能求直線長度

∫(c) ds = l(曲線長度)

被積函式不為1時,就是求以弧線為底線的曲面的面積

∫(c) f(x,y) ds = a(曲面面積)

當被積函式為1時,第一類曲面積分就是求曲面的面積,對比二重積分只能求平面面積

∫∫(σ) ds = a(曲面面積)、自由度比第一類曲線積分大

∫∫(σ) f(x,y,z) ds,物理應用、例如曲面的質量、重心、轉動慣量、流速場流過曲面的流量等

而第二類曲線積分/第二類曲面積分以物理應用為主要,而且是有"方向性"的,涉及向量範圍了。

這兩個比較複雜,概念又深了一層,等你學到再理解吧。

曲線積分與二重積分的區別二重積分與曲線積分割槽別

1 定義不 同曲線積分 二重積分 2 物理意義不同 曲線積分 由x軸上兩個點所確定的範圍內 一條線段 那條曲線和座標軸 x軸 所圍成的面積。二重積分 分別由x,y軸上兩點確定的一個範圍內 一個面 那個曲面和座標平面 xy平面 所圍成的體積。3 適用範圍不同 曲線積分只能用來處理二維平面中的問題。二重...

求大神解答用一重積分,二重積分和三重積分求體積有什麼不同呢

一重積分可以求旋轉體的體積 二重積分表示曲頂柱體的體積 被積函式為1的三重積分表示積分割槽域的體積 一重是一次積分,二重是倆次 先確定z發的範圍 c,c 然後用垂直於z軸的平面擷取積分割槽域,得到的區域即為xy的積分割槽域,而 dxdy的幾何意義為積分割槽域的面積。由於截得的積分割槽域為橢圓,而橢圓...

二重積分,三重積分的幾何意義?怎麼理解這些概念啊求大神幫忙,感激不盡

二重積分的積分割槽域是平面區域d,被積函式f x,y 表示高度,所以二重積分可理解為以d為底,高為f x,y 的曲頂柱體的體積,特別的,當f x,y 1時,積分就等於d的面積。類似的,三重積分的積分割槽域是空間區域,被積函式f x,y,z 可理解為密度,所以三重積分的物理意義就是立體的質量,特別的,...