證明 若x及x時,函式f(x 的極限都存在且都等於A,則lim xf x A

2021-04-19 07:54:24 字數 1679 閱讀 7396

1樓:匿名使用者

|根據定義

lim(x→+∞)f(x)=a⇒對任意e>0,存在x1>0,當x>x1時,|f(x)-a|0,存在x2>0,當x<-x2時,|f(x)-a|x時,|f(x)-a|

即lim(x→∞)f(x)=a

2樓:萌寶寶

取x1和x2最小的那個吧

若f(x)在[a,+∞)上連續,且limx→+∞f(x)存在,證明f(x)在[a,+∞)上有界

3樓:drar_迪麗熱巴

因為lim(x->+∞)f(x)存在,不妨令其為a

則根據極限定義,對ε=1,存在正數d>0,使對任意x>d,有|f(x)-a|<1

即a-1若da,有a-1若d>=a,因為f(x)在[a,d]上連續,所以f(x)在[a,d]上有界

即f(x)在[a,d]∪(d,+∞)=[a,+∞)上有界

綜上所述,f(x)在[a,+∞)上有界

若存在兩個常數m和m,使函式y=f(x),x∈d 滿足m≤f(x)≤m,x∈d 。 則稱函式y=f(x)在d有界,其中m是它的下界,m是它的上界。

關於函式的有界性.應注意以下兩點:

(1)函式在某區間上不是有界就是無界,二者必屬其一;

(2)從幾何學的角度很容易判別一個函式是否有界(見圖2).如果找不到兩條與x軸平行的直線使得函式的圖形介於它們之間,那麼函式一定是無界的。

如果自變數在某一點處的增量趨於0時,對應函式值的增量也趨於0,就把f(x)稱作是在該點處連續的。

注意:在函式極限的定義中曾經強調過,當x→x0時f(x)有沒有極限,與f(x)在點x0處是否有定義並無關係。

但由於現在函式在x0處連續,則表示f(x0)必定存在,顯然當δx=0(即x=x0)時δy=0<ε。於是上述推導過程中可以取消0<|δx|這個條件。

4樓:普海的故事

設limf﹙x﹚=a ﹙x趨於無窮大﹚

∴任意ε 存在x>a 當x>x時 |f﹙x﹚-a|<ε/4 ∴對任意x₁、x₂∈﹙x,﹢∞﹚ 有|f﹙x₁﹚-f﹙x₂﹚|≤|f﹙x₁﹚-a|+|f﹙x₂﹚-a|<ε/2

由康託定理 f﹙x﹚在[a,x]一致連續 因而存在δ<x-a 使|x₁-x₂|<δ,x₁,x₂∈[a,x]時 |f﹙x₁﹚-f﹙x₂﹚|<ε/2

從而對任意x₁,x₂∈[a,﹢∞﹚只要|x₁-x₂|<δ 就有|f﹙x₁﹚-f﹙x₂﹚|<ε/2+ε/2=ε

∴其一致連續

設函式f(x)在區間[a,+∞)上連續,有lim(x→+∞)f(x)存在且有限。證明:f(x)在[a,+∞)上有界

5樓:

因為bailim(x→+∞)f(x)存在且有限,du設為c

根據定義,任zhi意ε

dao>0,存在x>a,當x>x,有|f(x)-c|<ε不妨取ε=1

即有回,c-1答[a,+∞)上連續

那麼,對上述x>a,有f(x)在區間[a,x]上連續因此,由最值定理得:f(x)在[a,x]上必有最大值f(x)max和最小值f(x)min

即有:f(x)min≤f(x)≤f(x)max,x∈[a,x]那麼,取:

max=max

min=min

於是,有:

min≤f(x)≤max,x∈[a,+∞)因此f(x)有界

有不懂歡迎追問

試證明函式f x1 x 2 x 11 x 2 x

1 x 2 x 0 函式f x 定義域為x r,定義域是關於原點對稱的 化簡 f x 1 x 2 x 1 2 1 x 2 x 1 1 2 1 x 2 x 1 1 2 1 x 2 x 1 1 x 2 x 1 1 x 2 x 1 1 2 1 x 2 x 1 2x 1 x 2 1 x f x 1 x 2 ...

用函式極限的定義證明limx 2 5x

對任意 0,要使 5x 2 12 5 x 2 只要 x 2 5 取 5,則當0 x 2 時,5x 2 12 成立。求極限基本方法有 1 分式中,分子分母同除以最高次,化無窮大為無窮小計算,無窮小直接以0代入 2 無窮大根式減去無窮大根式時,分子有理化 3 運用兩個特別極限 4 運用洛必達法則,但是洛...

設函式f x 1 1 x 1 1 判斷並證明f x 在

1.在 1,正無窮 上單調遞減。理由 f x x 1 2 恆小於0 2.由於在 2,6 上單調遞減,故f 2 是最大值,f 6 是最小值.f x x 1 x f x 1 1 x bai2 f x 2 x 3 當f x 1 1 x 2 0,即x 1時函式有極值 du一 在 0,zhi dao 區間,x...