1樓:匿名使用者
微分是具有幾何意義的,表示一個很小的變化量,這樣有助於說明很
內多不規則圖形的變容化規律,併為積分提供依據~導數是代表一個式子或者數,本身並沒有什麼意義(雖然演算法與微分一樣),學習導數是為微分做準備的,並可以表示某種簡單的變化率的問題~
導數和微分的物理意義到底有什麼區別?
2樓:匿名使用者
導數--求函式在某一個
點的切線斜率
微分--求函式在某一個點的增長率
做曲線運動的物體在某點的速度方向是沿該點的切線方向。至於切線怎麼作,可分為兩種情況下分析。對於一般曲線的切線,要求不是太高,一般只是作示意圖即可,過這個點作一條直線與該曲線只有一個交點,這條直線就可看成切線。
微分和求導有什麼差別?
3樓:demon陌
區別:導數--求函式在某一個點的切線斜率
微分--求函式在某一個點的增長率
從幾何幾何意義上來理解就很簡單了,導數是函式影象在某一點處的斜率,也就是縱座標變化率和橫座標變化率的比值。微分是指函式影象在某一點處的切線在橫座標取得δx以後,縱座標取得的增量。
拓展資料:
微分在數學中的定義:由函式b=f(a),得到a、b兩個數集,在a中當dx靠近自己時,函式在dx處的極限叫作函式在dx處的微分,微分的中心思想是無窮分割。微分是函式改變數的線性主要部分。
微積分的基本概念之一。
推導設函式y = f(x)在某區間內有定義,x0及x0+△x在這區間內,若函式的增量δy = f(x0 + δx) − f(x0)可表示為δy = aδx + o(δx),其中a是不依賴於△x的常數, o(δx)是△x的高階無窮小,則稱函式y = f(x)在點x0是可微的。
aδx叫做函式在點x0相應於自變數增量△x的微分,記作dy,即:dy=aδx。微分dy是自變數改變數△x的線性函式,dy與△y的差是關於△x的高階無窮小量,我們把dy稱作△y的線性主部。
得出: 當△x→0時,△y≈dy。
導數的記號為:(dy)/(dx)=f′(x),我們可以發現,它不僅表示導數的記號,而且還可以表示兩個微分的比值(把△x看成dx,即:定義自變數的增量等於自變數的微分),還可表示為dy=f′(x)dx。
幾何意義
設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲 線在點m的切線對應δx在縱座標上的增量。當|δx|很小時,|δy-dy|比|δx|要小得多(高階無窮小),因此在點m附近,我們可以用切線段來近似代替曲線段。
導數(derivative)是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。
導數的本質是通過極限的概念對函式進行區域性的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。
不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函式一定連續;不連續的函式一定不可導。
對於可導的函式f(x),x↦f'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也**於極限的四則運演算法則。
反之,已知導函式也可以倒過來求原來的函式,即不定積分。微積分基本定理說明了求原函式與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
4樓:綠鬱留場暑
導數和微分的區別一個是比值、一個是增量。
1、導數是函式影象在某一點處的斜率,也就是縱座標增量(δy)和橫座標增量(δx)在δx-->0時的比值。
2、微分是指函式影象在某一點處的切線在橫座標取得增量δx以後,縱座標取得的增量,一般表示為dy。
擴充套件資料:
設函式y = f(x)在x的鄰域內有定義,x及x + δx在此區間內。如果函式的增量δy = f(x + δx) - f(x)可表示為 δy = aδx + o(δx)(其中a是不隨δx改變的常量,但a可以隨x改變),而o(δx)是比δx高階的無窮小(注:o讀作奧密克戎,希臘字母)那麼稱函式f(x)在點x是可微的。
且aδx稱作函式在點x相應於因變數增量δy的微分,記作dy,即dy = aδx。函式的微分是函式增量的主要部分,且是δx的線性函式,故說函式的微分是函式增量的線性主部(△x→0)。
通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx。函式因變數的微分與自變數的微分之商等於該函式的導數。
因此,導數也叫做微商。
當自變數x改變為x+△x時,相應地函式值由f(x)改變為f(x+△x),如果存在一個與△x無關的常數a,使f(x+△x)-f(x)和a·△x之差是△x→0關於△x的高階無窮小量,則稱a·△x是f(x)在x的微分,記為dy,並稱f(x)在x可微。一元微積分中,可微可導等價。
記a·△x=dy,則dy=f′(x)dx。例如:d(sinx)=cosxdx。
微分概念是在解決直與曲的矛盾中產生的,在微小區域性可以用直線去近似替代曲線,它的直接應用就是函式的線性化。微分具有雙重意義:它表示一個微小的量,因此就可以把線性函式的數值計算結果作為本來函式的數值近似值,這就是運用微分方法進行近似計算的基本思想。
推導設函式y = f(x)在某區間內有定義,x0及x0+△x在這區間內,若函式的增量δy = f(x0 + δx) − f(x0)可表示為δy = aδx + o(δx),其中a是不依賴於△x的常數, o(δx)是△x的高階無窮小,則稱函式y = f(x)在點x0是可微的。
aδx叫做函式在點x0相應於自變數增量△x的微分,記作dy,即:dy=aδx。微分dy是自變數改變數△x的線性函式,dy與△y的差是關於△x的高階無窮小量,我們把dy稱作△y的線性主部。
得出: 當△x→0時,△y≈dy。
導數的記號為:(dy)/(dx)=f′(x),我們可以發現,它不僅表示導數的記號,而且還可以表示兩個微分的比值(把△x看成dx,即:定義自變數的增量等於自變數的微分),還可表示為dy=f′(x)dx。
[4]
幾何意義
設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲 線在點m的切線對應δx在縱座標上的增量。當|δx|很小時,|δy-dy|比|δx|要小得多(高階無窮小),因此在點m附近,我們可以用切線段來近似代替曲線段。
5樓:王王王小六
1、定義不同
導數又名微商,當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數。
微分在數學中的定義:由函式b=f(a),得到a、b兩個數集,在a中當dx靠近自己時,函式在dx處的極限叫作函式在dx處的微分,微分的中心思想是無窮分割。微分是函式改變數的線性主要部分。
2、本質不同
導數是描述函式變化的快慢,微分是描述函式變化的程度。導數是函式的區域性性質,一個函式在某一點的導數描述了這個函式在這一點附近的變化率。而微分是一個函式表示式,用於自變數產生微小變化時計算因變數的近似值。
3、幾何意義不同
導數的幾何意義是切線的斜率,微分的幾何意義是切線縱座標的增量。因此微分可以用來做近似運算和誤差估計。最簡單的一元情況下,導數是一個確定的數值,幾何意義是切線斜率,物理意義是瞬時速度。
6樓:匿名使用者
導數表示一個函式在各個點上的斜率。積分可以算是求導的逆運算。微分跟求導運算差不多,只不過表現形式不同,函式的微分與自變數的微分之商等於該函式的導數。
7樓:我的化學變化
對於滿足條件的函式f(x),對其微分是指 df=f'(x)dx,而對其求導就是f'(x),求導就是函式的微分與自變數微分的比值,亦稱「微商」
8樓:匿名使用者
(1)起源(定義)不同:導數起源是函式值隨自變數增量的變化率,即△y/△x的極限。微分起源於微量分析,如△y可分解成a△x與o(△x)兩部分之和,其線性主部稱微分。
當△x很小時,△y的數值大小主要由微分a△x決定,而o(△x)對其大小的影響是很小的。
(2)幾何意義不同:導數的值是該點處切線的斜率,微分的值是沿切線方向上縱座標的增量,而△y則是沿曲線方向上縱座標的增量。可參考任何一本教材的圖形理解。
(3)聯絡:導數是微分之商(微商)y' =dy/dx, 微分dy=f'(x)dx,這裡公式本身也體現了它們的區別。
(4)關係:對一元函式而言,可導必可微,可微必可導。
9樓:匿名使用者
微分不是求導。
1、定義不同
微分:由函式b=f(a),得到a、b兩個數集,在a中當dx靠近自己時,函式在dx處的極限叫作函式在dx處的微分,微分的中心思想是無窮分割。
求導:當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。
2、基本法則不同
微分:基本法則
求導:基本求導公式
3、應用不同
微分:法線,我們知道,曲線上一點的法線和那一點的切線互相垂直,微分可以求出切線的斜率,自然也可以求出法線的斜率。
增函式與減函式,微分是一個鑑別函式(在指定定義域內)為增函式或減函式的有效方法。
變化的速率,微分在日常生活中的應用,就是求出非線性變化中某一時間點特定指標的變化。
求導:求導是微積分的基礎,同時也是微積分計算的一個重要的支柱。物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。
如導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。
為什麼要學習常微分方程?學習常微分方程的實際意義是什麼?希望大家各抒己見指點我一下讓我對這門課
數學是解決問題的重要工具利用數學來解決實際問題時,不可避免會遇到方程式,如果是連續變化的問題,導數是少不了的,如果一個未知量列的表示式與他的導數,積分式 在了一起,那我們不解決微分方程,你是得不到求解的 請問微分方程的意義是什麼,為什麼在控制論中總要用到他呢?是不是可以這樣理解,微分方程存在的意義,...
肩噌是什麼要詳細定義
男性靠著抄女性的肩膀撒嬌的動作,襲下面是bai 日語的的解釋,肩du 男性 女性 zhi肩 頭 dao 弱音 吐 希望可以幫助你,因為是流行語,沒有找到很準確的定義,上面是我自己翻譯的,僅供參考 我喜歡在男朋友的肩膀用臉蹭來蹭去 說明我怎麼樣呢 喜歡的一種表達方式,嬰兒也喜歡在媽媽的懷抱蹭來蹭去,撒...
定義畫筆預設為什麼選不了,ps定義畫筆預設
你好,很高興為你解答疑問。ps的 定義畫筆預設 的使用是有一定限制的,當選區太大了,或者是很複雜的多個選區組合交叉在一起的型別的話,這種選區裡面的內容就不會被 畫筆預設 所識別。一般情況下,只有簡單的像是矩形或者別的不規則但很單一的選區,裡面的內容才能被自定義為畫筆預設。白色的內容是無法定義成畫筆的...