高數,線性微分方程疑問,如圖,鉛筆劃線處為什麼趨於正無窮的時候,會有y以及y的導數是趨於0的?求詳

2021-04-20 05:18:47 字數 3247 閱讀 7062

1樓:帥帥的

你的通解y.都求出來了,看x趨於正無窮時y是趨於0的,同理y的導數也是趨於0的。 簡單計算下就行了! 不過這個題求反常積分的方法挺好的。

各位大佬,高數非齊次線性微分方程的特解y*怎麼設?就是qm(x),怎麼設。

2樓:粒下

二階常係數非齊次線性微分方程的表示式為y''+py'+qy=f(x),其特解y*設法分三種情況。

1、如果f(x)=p(x),pn(x)為n階多項式。

若0不是特徵值,在令特解y*=x^k*qm(x)*e^λx中,k=0,λ=0;因為qm(x)與pn(x)為同次的多項式,所以qm(x)設法要根據pn(x)的情況而定。

比如如果pn(x)=a(a為常數),則設qm(x)=a(a為另一個未知常數);如果pn(x)=x,則設qm(x)=ax+b;如果pn(x)=x^2,則設qm(x)=ax^2+bx+c。

若0是特徵方程的單根,在令特解y*=x^k*qm(x)*e^λx中,k=1,λ=0,即y*=x*qm(x)。

若0是特徵方程的重根,在令特解y*=x^k*qm(x)*e^λx中,k=2,λ=0,即y*=x^2*qm(x)。

2、如果f(x)=p(x)e^αx,pn(x)為n階多項式。

若α不是特徵值,在令特解y*=x^k*qm(x)*e^αx中,k=0,即y*=qm(x)*e^αx,qm(x)設法要根據pn(x)的情況而定。

若α是特徵方程的單根,在令特解y*=x^k*qm(x)*e^αx中,k=1,即y*=x*qm(x)*e^αx。

若α是特徵方程的重根,在令特解y*=x^k*qm(x)*e^λx中,k=2,即y*=x^2*qm(x)*e^αx。

3、如果f(x)=[pl(x)cos(βx)+pn(x)sin(βx)]e^αx,pl(x)為l階多項式,pn(x)為n階多項式。

若α±iβ不是特徵值,在令特解y*=x^k*[rm1(x)cos(βx)+rm2(x)sin(βx)]e^αx中,k=0,m= max ,rm1(x)與rm2(x)設法要根據pl(x)或pn(x)的情況而定(同qm(x)設法要根據pn(x)的情況而定的原理一樣)。

即y*=[rm1(x)cos(βx)+rm2(x)sin(βx)]e^αx

若α±iβ不是特徵值,在令特解y*=x^k*[rm1(x)cos(βx)+rm2(x)sin(βx)]e^αx中,k=1,即y*=x*[rm1(x)cos(βx)+rm2(x)sin(βx)]e^αx。

3樓:匿名使用者

如圖qm(x)是與pm(x)同次的多項式

舉個例子

二階微分方程為……=2e^x

此時pm(x)=2

設qm(x)=b

如果二階微分方程為……=2xe^x

設qm(x)=ax+b

如果二階微分方程為……=2x²e^x

設qm(x)=ax²+bx+c(不過這種情況的題目很少很少見,我是沒見過)

rm(x)是m次多項式,m=max

什麼意思呢?

跟上面的類似。

假設二階微分方程為……e^x(2cosx+2sinx)明顯此時為pl(x)=pn(x)=2,那麼就是x^0設rm1(x)=a,rm2(x)=b

如果二階微分方程為……e^x(2xcosx+2sinx)這時候最大次數是x^1,

所以設rm1(x)=ax+b,rm2(x)=cx+d二次方的我就不列舉了,很少見。

4樓:命定

先將原方程等號右端的自由項看成 f(x)=x^k · pm(x) · e^λx 方程①

1、對應題主的情況一,qm(x)=b0

原方程 y"+y'-2y=2e^x

原方程對應的齊次特徵方程 r^2+r-2=0,

齊次特徵根 r1=1

r2=-2

然後看到原方程等號右端為 2e^x,

將 2e^x 與 x^k·pm(x)·e^λx 比較,很明顯可以看出λ=1

λ=1=r1,而λ≠r2,可以看到λ為單特徵根因為只與其中的一個r1相等

所以k=1,因為單特徵根所以k取1。

還記得回答頂部的方程①嗎?

方程①變成了 f(x)=x^1 · pm(x) · e^1x =x · e^x · pm(x)

發現m還不知道,再將 x·e^x·pm(x) 與 2e^x 比較,

很明顯可以看出pm(x)=2,所以設qm(x)=b0,常數對應常數嘛

因為 f(x)=x·e^x·pm(x) 中的x是根據k取得,跟pm(x)無關

e^x是根據λ取得,跟pm(x)也無關。

所以 pm(x) 只可能與 2e^x 的常數2有關。既然pm(x)只與常數有關,

那就設qm(x)為一個常數b0

所以 y*=x^k · pm(x) · e^λx

最後設為 y*=b0 · x · e^x

2、對應題主的情況二,qm(x)=b0x+b1

同理原方程 y"-3y'+2y=x·e^2x

r1=1,r2=2

比較e^2x與e^λx,所以λ=2

λ=2=r2,所以λ為單特徵根,所以k=1

此時原方程等號右端還有一個 x ,就是留下來對比pm(x)的

所以 qm(x) 設為 b0x+b1 形式

所以最後y*=x^k · qm(x) · e^λx = x · (b0x+b1) · e^2x

即y*= x · (b0x+b1) · e^2x

3、對應題主的情況三,qm(x)=b0x^2+b1x+b2

原方程 2y"+5y'=5x^2-2x-1

r1=0

r2=-5/2

對比λ=0=r1,所以k取1,

而pm(x)要去對應5x^2-2x-1,所以qm(x)設為b0x^2+b1x+b2

所以最後y*=x^k · qm(x) · e^0 = x · (b0x^2+b1x+b2) = b0x^3+b1x^2+b2x

即y* = b0x^3+b1x^2+b2x

高數 常微分方程,高階線性微分方程,這裡的y該怎麼設?

5樓:兔斯基

^等式右側形如 e^(rx)nm(x)

則設特解為y*=x^ke^(rx)pm(x)(其中k=0,1,2,若對應的r為特徵方程的非根,1次,2重根;

多項式專p的次數m同n同)

此題r=1,非解

屬,k=o,m=0

故 y*=x^0*e^(x)p0(x)=ce^x(c為未知量,需代入微分方程)

解得c=一1/3

故特解y*=一e^x/3望採納

高數求微分方程通解求詳細過程高數,微分方程求通解

y x c 1 2 x 2 c 2 let u x 3.y du dx x 3.y 3x 2.y y du dx 3 x u x 3 xy 3y 0 x 3u x 3 0 x.du dx 0 u dx x lnx c1 x 3.dy dx lnx c1dy dx lnx c1 x 3y lnx c1...

全微分方程,高數,在高數解微分方程的時候,全微分方程的求解公式是怎麼來的望達人告知一下推導過程感激不盡

因為那些和前面的重複了啊,你的是格林公式那邊的吧,對y積分的結果是3x 2y 2 2 xy 3 y 3 3,是和對x的是重複了 大一高數,求解全微分方程,求幫助 你合併錯了。我明天給你寫詳細過程。不對,要是換個來話不是同一個減法。在高數解微分方程的時候,全微分方程的求解公式是怎麼來的?望達人告知一下...

高數微分方程通解,高等數學微分方程通解

方法如下圖所示,請認真檢視,祝學習愉快 高等數學微分方程通解?根據線性微分方程解的結構,非 齊次微分方程的通解是對應齊次微分方程的通解加上非齊次微分方程的特解,故非齊次微分方程的通解是 y y1 c y2 記 c c 即得 y y1 cy2。選 c 這道題不難。我給你說下思路。這是缺x型。令y p,...