為什麼矩陣A的特徵值是1,1,0,那麼AE的特徵值是

2021-03-03 21:48:52 字數 3595 閱讀 1406

1樓:匿名使用者

有個定理:

設copy f(x) 是

個多項式, λ是a的特徵值bai, α是dua的屬於特徵值λzhi的特徵向量dao

則 f(λ) 是 f(a) 的特徵值, α仍是f(a)的屬於特徵值f(λ)的特徵向量

所以 設 f(x) = x+1, 則 f(a) = a+ea的特徵值是1,1,0, f(a) 的特徵值就是 f(1),f(1),f(0), 即 2,2,1.

同理, a+ne 的特徵值是 1+n, 1+n, na-ne 的特徵值是 1-n, 1-n, -n

為什麼 矩陣a的特徵值是1,1,0,那麼a+e的特徵值是2,2,1? a+ne呢? a-ne呢?

2樓:電燈劍客

注意baia的特

徵值是det(xe-a)=0的根,du把a+ne代進去就得到det(xe-(a+ne))=det((x-n)e-a)=0,x是a+ne的特徵值等價於x-n是a的特徵值,zhi所以a+ne的特徵值就是daoa的特徵值加上n。

為什麼矩陣a的特徵值是1,1,0,那麼a+e的特

3樓:匿名使用者

若λ是a的特徵值,對應的特徵向量是x,則ax=λx,所以(a+e)x=ax+ex=λx+x=(λ+1)x,所以λ+1是a+e的特徵值。所以若a的特徵值是1,1,0,則a+e的特徵值就是1+1,1+1,0+1,也就是2,2,1。

4樓:敏朋匡凝竹

注意a的特徵值是det(xe-a)=0的根,把a+ne代進去就得到det(xe-(a+ne))=det((x-n)e-a)=0,x是a+ne的特徵值等價於x-n是a的特徵值,所以a+ne的特徵值就是a的特徵值加上n。

若a的特徵值是1,1,0,那麼a+e的特徵值是2,2,1,均大於0,又a+e是實對稱矩陣,所以a+e是正定矩陣,求解釋

5樓:匿名使用者

實對稱矩陣為正定的充分必要條件就是:矩陣的特徵值全為正

在這裡a+e的特徵值是2,2,1,均大於0

而且a+e是實對稱矩陣,所以a+e是正定矩陣

線性代數 若矩陣a的特徵向量取值範圍是0或1 那麼e+a的特徵值取值範圍是1或2? 我感

6樓:匿名使用者

若λ是a的特徵值,x是對應的特徵向量,即ax=λx,則(e+a)x=ex+ax=x+λx=(1+λ)x,所以1+λ是e+a的特徵值。也就是說a的特徵值是0或1,則e+a的特徵值是1或2。

設三階矩陣a的特徵值為-1,1,2,求|a*|以及|a^2-2a+e|

7樓:drar_迪麗熱巴

答案為2、4、0。

解題過程如下:

1. a的行列式等於a的全部特徵值之積

所以 |a| = -1*1*2 = -2

2. 若a是可逆矩陣a的特徵值, 則 |a|/a 是a*的特徵值

所以a*的特徵值為 2,-2,-1

所以|a*| = 2*(-2)*(-1) = 4.

注: 當然也可用伴隨矩陣的行列式性質 |a*| = |a|^(n-1) = |a|^2 = (-2)^2 = 4.

3. 若a是可逆矩陣a的特徵值, 則對多項式g(x), g(a)是g(a)的特徵值

這裡 g(x) = x^2-2x+1, g(a)=a^2-2a+e

所以 g(a)=a^2-2a+e 的特徵值為 g(-1),g(1),g(2), 即 4,0,1

所以 |a^2-2a+e| = 4*0*1 = 0

特徵值是線性代數中的一個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用。設 a 是n階方陣,如果存在數m和非零n維列向量 x,使得 ax=mx 成立,則稱 m 是a的一個特徵值(characteristic value)或本徵值(eigenvalue)。

非零n維列向量x稱為矩陣a的屬於(對應於)特徵值m的特徵向量或本徵向量。

求矩陣的全部特徵值和特徵向量的方法如下:

第一步:計算的特徵多項式;

第二步:求出特徵方程的全部根,即為的全部特徵值;

第三步:對於的每一個特徵值,求出齊次線性方程組:

的一個基礎解系,則的屬於特徵值的全部特徵向量是

(其中是不全為零的任意實數).

[注]:若是的屬於的特徵向量,則也是對應於的特徵向量,因而特徵向量不能由特徵值惟一確定.反之,不同特徵值對應的特徵向量不會相等。

8樓:等待楓葉

|^|a*|等於4。|a^2-2a+e|等於0。

解:因為矩陣a的特徵值為λ1=-1,λ2=1,λ3=2,那麼|a|=λ1*λ2*λ3=-1*1*2=-2。

又根據|a*| =|a|^(n-1),可求得 |a*|= |a|^2 = (-2)^2 = 4。

同時根據矩陣特徵值性質可求得a^2-2a+e的特徵值為η1、η2、η3。

則η1=(λ1)^2-2λ1+1=4,η1=(λ2)^2-2λ2+1=0,η3=(λ3)^2-2λ3+1=1,

則|a^2-2a+e|=η1*η2*η3=4*0*1=0

即|a*|等於4。|a^2-2a+e|等於0。

9樓:匿名使用者

|此題考查特徵值的性質

用常用性質解此題:

1. a的行列式等於a的全部特徵值之積

所以 |a| = -1*1*2 = -2

2. 若a是可逆矩陣a的特徵值, 則 |a|/a 是a*的特徵值所以a*的特徵值為 2,-2,-1

所以|a*| = 2*(-2)*(-1) = 4.

注: 當然也可用伴隨矩陣的行列式性質 |a*| = |a|^(n-1) = |a|^2 = (-2)^2 = 4.

3. 若a是可逆矩陣a的特徵值, 則對多項式g(x), g(a)是g(a)的特徵值

這裡 g(x) = x^2-2x+1, g(a)=a^2-2a+e所以 g(a)=a^2-2a+e 的特徵值為 g(-1),g(1),g(2), 即 4,0,1

所以 |a^2-2a+e| = 4*0*1 = 0

10樓:迮微蘭盛卿

^-2,2,5,把原來的特徵值帶入方程即可。

第一個理解,設v是a的對應特徵值a的特徵向量,那麼bv=(a^2+2a+-1)v,v也是b的對應於a^2+2a+-1的特徵向量。從而因為a有個特徵值,對應三個特徵向量v1,v2,v3,所以我們也找到了b的三個特徵向量,對應的特徵值可以算出。

第二個理解,從矩陣看,a可以對角化,即存在可逆陣p使得,pap^為對角陣,對角線元素為-1,1,2,從而你可以計算pbp^也是個對角陣,(注意,pa^2

p^=pap^pap^,

簡單)對角線元素可以輕易

算出。這兩個解釋本質是一樣的

11樓:大鋼蹦蹦

||||(a*)a=|a|e

同取行列式

|(a*)a|=||a|e|

|(a*)|*|a|=||a|e|=|a|^3|a*|=|a|^2=(-1*1*2)^2=4|a^2-2a+e|=|(a-e)^2|=|a-e|^2a-e的特徵值是:-2,0,1

所以|a-e|=0

|a^2-2a+e|=0

這個矩陣的特徵值怎麼算這個矩陣的特徵值要怎麼算?

計算特徵值實際上就是求行列式 在這裡設特徵值為a,那麼 2 a 2 2 2 5 a 4 2 4 5 a r3 r2 2 a 2 2 2 5 a 4 0 a 1 1 a c2 c3 2 a 4 2 2 9 a 4 0 0 1 a 按第3行展開 1 a 2 a 9 a 8 1 a 2 10 a 0 顯然...

特徵值有什麼用矩陣的特徵值和特徵向量在工程應用有什麼作用

1 可以用在研究物理 化學領域的微分方程 連續的或離散的動力系統中。例如,在力學中,慣量的特徵向量定義了剛體的主軸。慣量是決定剛體圍繞質心轉動的關鍵資料 2 被數學生態學家用來 原始森林遭到何種程度的砍伐,會造成貓頭鷹的種群滅亡 3 著名的影象處理中的pca方法,選取特徵值最高的k個特徵向量來表示一...

n n矩陣A的特徵值和A的共軛轉置的特徵值相等嗎?為什麼

a和a t永遠相似 a t和a h的特徵值差一個共軛,所以a和a h的特徵值也會相差一個共軛 矩陣的共軛轉置乘以自身得到的結果的特徵值是什麼 應該說沒有來太必然的聯絡。源 b的特徵值bai是a的奇du 異值的平方,但是a的奇異值和a的特zhi徵值沒有很必然的dao聯絡,除非a本身是hermite陣。...