1樓:邗芷若桐誠
函式的單調性和二階導數無關。
只是和一階導數有關。
所以判斷函式的單調性和單調區間,應該根據函式的一階導數來判斷。而不應該根據函式的二階導數來判斷。
2樓:皇甫谷藍朋花
根據駐點(一階來導數為0的點)源的二階導數值,可以判斷駐點的性質:
>0,駐點是極小值點,左側為單減區間右側為單增區間;
<0,駐點是極大值點,左側為單增區間右側為單減區間;
=0,駐點有可能不是極值點,單調性有可能不改變。
怎麼用二階導數判斷函式的單調性,和單調區間,數學大師來。
3樓:計秀愛邢秋
根據駐點
bai(一階導數du為0的點)的二階導數值,zhi可以判斷駐點dao的性質:回
>0,駐點是極小答
值點,左側為單減區間右側為單增區間;
<0,駐點是極大值點,左側為單增區間右側為單減區間;
=0,駐點有可能不是極值點,單調性有可能不改變。
4樓:僑秀芳鮮媼
函式的單調性和二階導數無關。
只是和一階導數有關。
所以判斷函式的單調性和單調區間,應該根據函式的一階導數來判斷。而不應該根據函式的二階導數來判斷。
5樓:匿名使用者
課本上寫得清清楚楚明明白白,犯得著在這兒找數學大師?課本就是數學大師!
6樓:浩宇清清
二階導就是把第二個式子當作原始公式,再進行求導,大於0,說明這個函式版是單調增的
權,取它的邊界值,最小為0,則說明第二個式子是大於0的,這要就證明了第一個式子是單調遞增的。所以後見到求單調性時,當一次求導判斷不出來時,要二次求導,並取界值比較是否大於0。
怎麼用導數來判斷函式單調性
7樓:路堯家的顧小言
1、先判斷函式y=f(x)在區間d內是否可導(可微);
2、如果可導(可微),且x∈d時恆有f'(x)>0,則函式y=f(x)在區間d內單調增加;反之,若x∈d時,f'(x)<0,則稱函式y=f(x)在區間d內單調減少。
其他判斷函式單調性的方法還有:
1、圖象觀察法
如上所述,在單調區間上,增函式的圖象是上升的,減函式的圖象是下降的。因此,在某一區間內,一直上升的函式圖象對應的函式在該區間單調遞增;
一直下降的函式圖象對應的函式在該區間單調遞減;
2、定義法
根據函式單調性的定義,在這裡只闡述用定義證明的幾個步驟:
1在區間d上,任取x1x2,令x12作差f(x1)-f(x2);
3對f(x1)-f(x2)的結果進行變形處理(通常是配方、因式分解、有理化、通分,利用公式等等);
4確定符號f(x1)-f(x2)的正負;
5下結論,根據「同增異減」原則,指出函式在區間上的單調性。
8樓:小蘋果
先寫出原函式的定義域,然後對原函式求導,令導數大於零,反解出x的範圍,該範圍即為該函式的增區間,同理令導數小於零,得到減區間。若定義域在增區間內,則函式單增,若定義域在減區間內則函式單減,若以上都不滿足,則函式不單調。
定義:如果函式y=f(x)在區間d內可導(可微),若x∈d時恆有f'(x)>0,則函式y=f(x)在區間d內單調增加;反之,若x∈d時,f'(x)<0,則稱函式y=f(x)在區間d內單調減少。
9樓:貿夏真唐諾
利用導數判斷函式的單調性的方法
利用導數判斷函式的單調性,其理論依據如下:
設函式在某個區間內可導,如果,則為增函式;如果,則為減函式。如果,則為常數。
要用導數判斷好函式的單調性除掌握以上依據外還須把握好以下兩點:
導數與函式的單調性的三個關係
我們在應用導數判斷函式的單調性時一定要搞清以下三個關係,才能準確無誤地判斷函式的單調性。以下以增函式為例作簡單的分析,前提條件都是函式在某個區間內可導。
1.與為增函式的關係。
由前知,能推出為增函式,但反之不一定。如函式在上單調遞增,但,∴是為增函式的充分不必要條件。
2.時,與為增函式的關係。
若將的根作為分界點,因為規定,即摳去了分界點,此時為增函式,就一定有。∴當時,是為增函式的充分必要條件。
3.與為增函式的關係。
由前分析,為增函式,一定可以推出,但反之不一定,因為,即為或。當函式在某個區間內恆有,則為常數,函式不具有單調性。∴是為增函式的必要不充分條件。
函式的單調性是函式一條重要性質,也是高中階段研究的重點,我們一定要把握好以上三個關係,用導數判斷好函式的單調性。因此新教材為解決單調區間的端點問題,都一律用開區間作為單調區間,避免討論以上問題,也簡化了問題。但在實際應用中還會遇到端點的討論問題,特別是研究以下問題時。
二.函式單調區間的合併
函式單調區間的合併主要依據是函式在單調遞增,在單調遞增,又知函式在處連續,因此在單調遞增。同理減區間的合併也是如此,即相鄰區間的單調性相同,且在公共點處函式連續,則二區間就可以合併為一個區間。
【例】用導數求函式()的單調區間。
解:(用第一種關係及單調區間的合併),當,即或時,∴在,上為增函式,又∵在處連續,且相鄰區間的單調性又相同,∴在上為增函式。
舊教材很少提到函式單調區間的合併,原因在於教師很難講,學生很難把握,但是新教材引進函式的連續性和導數之後就很容易說明,也很容易理解了。
綜之,用導數證明劃分函式的單調性是導數最常用、也是最基本的應用,其它重要性如極值、最值等都必須用到單調性。它比用單調性的定義證明要簡單許多,劃分也容易理解得多。討論可導函式得單調性可按如下步驟進行:
確定的定義域;(2)求,令,解方程求分界點;
(3)用分屆點將定義域分成若干個開區間;
(4)判斷在每個開區間內的符號,即可確定的單調性。
以下是前幾年高考用導數證明、求單調性的題目,舉例說明如下:
例1設,是上的偶函式。
(i)求的值;(ii)證明在上是增函式。(2023年天津卷)
解:(i)依題意,對一切有,即,
∴對一切成立,由此得到,,又∵,∴。
(ii)證明:由,得,
當時,有,此時。∴在上是增函式。
10樓:匿名使用者
解:你的思路沒有錯,繼續求就是了!
f'(x)=x2+ax+1
1)當a=0時;
f'(x)=x2+1>0
因此,原函式在r上單調遞增;
2)當a≠0,且a2-4<0,即:a∈(-2,0)u(0,2)時,f'(x)=(x+1/2a)2+1-1/4a2≥1因此,原函式在r上單調遞增;
3)當a≠0,且|a|≥2時,
令:f'(x)=0,則:
x1,2=[-a±√(a2-4)]/2,則:
∴x∈(-∞,[-a-√(a2-4)]/2]u[[-a+√(a2-4)]/2,+∞),f(x)↑
x∈(-a-√(a2-4)]/2,-a+√(a2-4)]/2),f(x)↓
如何用導數求函式的單調性和單調區間(簡
11樓:善言而不辯
求出定義域內導數值等於0的點(駐點)及不可導的點,如兩者均不存在,則函式是單調函內數;
求出極容值點:判斷駐點及不可導點左右一階導數值的正負有無變化,有為極值點(左-右+為極小值點,左+右-為極大值點),無,則不是極值點。也可以通過求二階導數(一階導數再對x求導)來判斷:
將駐點值代入,求出駐點處的二階導數值,二階導數值》0,該駐點為極小值點,二階導數值<0,該駐點為極大值點,二階導數值=0,該駐點可能不是極值點,需進一步判斷。
極小值點左側為單調遞減區間,右側為單調遞增區間,極大值點左側為單調遞增區間,右側為單調遞減區間。類似解不等式的穿針引線法,就可得出極值點(定義域端點)之間單調區間。
怎麼根據二階導數判斷函式單調性
12樓:匿名使用者
二階導數判斷函式凹凸性,【不】用於數判斷函式單調性;判斷函式單調性用一階導數。
如何利用一階導數及二階導數分析函式的單調性、極值、最值、影象的凹凸性及拐?
13樓:匿名使用者
單調性::
(1)若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函式駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。
(2)若已知函式為遞增函式,則導數大於等於零;若已知函式為遞減函式,則導數小於等於零。
根據微積分基本定理,對於可導的函式,有:
如果函式的導函式在某一區間內恆大於零(或恆小於零),那麼函式在這一區間內單調遞增(或單調遞減),這種區間也稱為函式的單調區間。導函式等於零的點稱為函式的駐點,在這類點上函式可能會取得極大值或極小值(即極值可疑點)。進一步判斷則需要知道導函式在附近的符號。
對於滿足的一點,如果存在使得在之前區間上都大於等於零,而在之後區間上都小於等於零,那麼是一個極大值點,反之則為極小值點。另外極值不一定等於最值。求最值還需要求出區間邊界的函式值,再與極值比較,進一步取得區間最小值
x變化時函式(藍色曲線)的切線變化。函式的導數值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。
凹凸性:
可導函式的凹凸性與其導數的單調性有關。如果函式的導函式在某個區間上單調遞增,那麼這個區間上函式是向下凹的,反之則是向上凸的。如果二階導函式存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函式是向下凹的,反之這個區間上函式是向上凸的。
曲線的凹凸分界點稱為曲線的拐點。
怎麼用二階導數判斷函式的單調性,和單調
二階導就是把第 復二個式子當製作原始公式,再進行求bai導,大於0,說明這個du函式是單調zhi 增的dao,取它的邊界值,最小為0,則說明第二個式子是大於0的,這要就證明了第一個式子是單調遞增的.所以後見到求單調性時,當一次求導判斷不出來時,要二次求導,並取界值比較是否大於0.函式的單調性和二階導...
導數,判斷單調性,用導數怎麼來判斷函式的單調性
1 若導數 bai大於零,則單調遞增du,若導數zhi小於零,則單調遞減.導數等於dao零為函版數駐點,不一定為極權 值點,需代入駐點左右兩邊的數值求導數正負判斷單調性.2 若已知函式為遞增函式,則導數大於等於零,若已知函式為遞減函式,則導數小於等於零.導數 derivative 是微積分中的重要基...
怎麼用導數判斷函式單調性,怎麼用導數來判斷函式單調性
導數大於零,函式單調遞增。導數小於零,函式單調遞減,對於等於零的情況,只要在一個區間內不恆為零,要把等於零,考慮進去 函式解析式中含有引數時,求其單調區間問題往往要轉化為解含引數的不等式問題,這時應對所含引數進行適當地分類討論,做到不重不漏,最後要將各種情況分別進行表述。導數大於零,函式單調遞增。導...