1樓:隨緣
當|數列 的公比
自q=1/(1+x)
當|q|<1 時,即 |1+x|>1,x>0或x<-2時lim(n-->∞
)(1/(1+x)+1/(1+x)^2+1/(1+x)^3+.......1/(1+x)^n)
=lim(n-->∞)1/(1+x)* [1-1/(1+x)^n]/[1-1/(1+x)]
=[1/(1+x)]/[1-1/(1+x)]=(1+x)/x=1/x+1
當 -2≤x<-1或-1原式極限不存在
2樓:影下de頭髮
這個要看x來、當然最簡單的一種是它大於零、就用等比數列求和公式、就可以了......等於零就沒玩的了......小於零應該也是等比的求和(等比求和就錯位想剪就可以求)
手機打字、給分啊
3樓:匿名使用者
以前做過提供2種解法解1:n->無窮 3^n<(1+2^n+3^n)<3*3^n lim=e^lim[(1/n)*ln(1^n+2^n+3^n)] 下面求lim[(1/n)*ln(1^n+
高數:lim(x->∞)((1+1/x)^x^2)/e^x求極限
4樓:春天的離開
^^^^^bai=lim(e^du(x2ln(1+1/x))-e^x)/x=lime^x(e^(x2ln(1+1/x)-x)-1)/x=lim(x2ln(1+1/x)-x)/xe^(-x)=lim(xln(1+1/x)-1)/e^(-x)=lim(ln(1+1/x)+x(-1/x2)/(1+1/x))/-e^(-x)
=lim(ln(1+1/x)-1/(1+x))/-e^(-x)=lim(-1/x(1+x)+1/(1+x)2)/e^(-x)=lim-e^x/x(1+x)2
=-∞擴充套件資
zhi料
lim(x→∞dao)x^2/e^x怎麼算高數極限版用洛畢塔權
lim(x→∞)x^2/e^x
=lim(x→∞)2x/e^x
=lim(x→∞)2/e^x=0
5樓:匿名使用者
1.這是一個分式求極限,且分子分母趨於無窮型
2.分子使用無窮小替換,意味著分子單獨開始求極限。也就是說運用了極限的四則運算性質,但是使用四則運算是有前提條件的,必須分子分母都必須極限存在,但是這裡明顯分母極限不存在,所以不能使用無窮小替換。
6樓:匿名使用者
替換必須是對因式操作。(1+1/x)^x和arcsinx都不是因式,所以不能替換
7樓:靜若繁華逝
首先對於q2 這種1^無窮
的極限,只能採用湊值來得到兩個重要極限當中的專lim(1+x)^1/x=e(x趨於0)並屬恆等變形來求;而對於q1,要想用lim(1+x)^1/x=e(x趨於0),首先要保證最前面的lim符號能分別移到分子分母上,而分母lim e^x(x趨於無窮)並不存在,所以lim號不能進去,只能通過對分子u^v,化為e^vlnu來求
8樓:sdau小愚
冪指函式,不求導數求極限,u^v,化為e^vlnu
9樓:匿名使用者
上下都有極限才能替換
求極限lim(x→∞)√(x^2+x+1)/(x-1) 10
10樓:demon陌
^左極限 lim(x→-∞)√(x^2+x+1)/(x-1) = lim(x→-∞)(-x)√(1+1/x+1/x^2)/(x-1)
= lim(x→-∞)-√(1+1/x+1/x^2)/(1-1/x) = -1;
右極限 lim(x→+∞)√(x^2+x+1)/(x-1) = lim(x→+∞)x√(1+1/x+1/x^2)/(x-1)
= lim(x→+∞)√(1+1/x+1/x^2)/(1-1/x) = 1。
則極限 lim(x→∞)√(x^2+x+1)/(x-1) 不存在。
擴充套件資料:
設為一個無窮實數數列的集合。如果存在實數a,對於任意正數ε (不論其多麼小),都∃n>0,使不等式|xn-a|<ε在n∈(n,+∞)上恆成立,那麼就稱常數a是數列 的極限,或稱數列 收斂於a。
如果上述條件不成立,即存在某個正數ε,無論正整數n為多少,都存在某個n>n,使得|xn-a|≥a,就說數列不收斂於a。如果不收斂於任何常數,就稱發散。
「當n>n時,均有不等式|xn-a|<ε成立」意味著:所有下標大於n的xn都落在(a-ε,a+ε)內;而在(a-ε,a+ε)之外,數列 中的項至多隻有n個(有限個)。換句話說,如果存在某 ε0>0,使數列 中有無窮多個項落在(a-ε0,a+ε0) 之外,則 一定不以a為極限。
11樓:玉杵搗藥
說「極限不存在」的,應該是錯誤的(或者樓主題目抄寫錯誤)。
為什麼limx→0(1+x)^2/x=e^{2ln(1+x)/x}中ln(1+x)為什麼不能直接等價替換成x,高數求極限
12樓:西域牛仔王
問題1、(1+x)^(2/x) 極限確實是 e^2,但整個式子還有其它部分,不能只對區域性求極限。
問題2、解答中第三行前一等號處,第二項正是利用了 ln(1+x) = x 求的極限。
而第一項也可以利用 ln(1+x) = x - x^2/2 快速得到答案。
13樓:楊建朝
為什麼limx→0(1+x)^2/x=e^中ln(1+x)為什麼不能直接等價替換成x,
高數求極限
具體說明如圖所示
14樓:匿名使用者
真的是好好笑哦,你居然告訴我說滿足極限的四則運演算法則?
首先,我們看你想單獨求分子第一項的極限,原因是什麼。你是不是覺得分子整體極限存在,所以根據差的極限等於極限的差,先把第一項求出來?
那麼我再問你,現在題目要你求的是分式的極限,你求分子極限是為什麼呢?說明你潛意識裡面已經想利用商的極限等於極限的商這條性質。但這條限制的前提條件在於分母極限不能是零,你想要用這條性質,你得滿足這個條件。
可是你看這道題,分母極限是零,對不對?那你為什麼要去單獨算分子極限?
15樓:匿名使用者
你想用泰勒可以鴨
但是隻到x是不夠的,看起來消掉等於零了,但其實分子上還有無窮小量,恰好分母也是一個無窮小量,兩個無窮小量的比值還不確定呢,直接拋棄分子的無窮小量就會錯誤了
你嘗試到x - 0.5*x^2就對了
16樓:匿名使用者
這裡實際上要點在於等價無窮小的階次如何確定通常情況下,分子中使用泰勒式,或者其他無窮小來替換時要特別注意保留的階次
分母是一階無窮小,那麼分子中的每一項式至少要保留到二階無窮小量進行運算
如果直接使用重要極限,實際上只是保留一階無窮小量,因此容易出現計算錯誤
你可以嘗試使用泰勒式,將分子的每一部分到4階來幫助理解這種題目,不深究的話就是洛必達法則暴力求解
17樓:匿名使用者
為什麼這個可以直接等價了,在加減法中不是不可以用等價嗎,2ln(1+x)/x,後邊不是還有一個2嗎
18樓:匿名使用者
ln(1+x)和x之間相差一個高階無窮小,有時候高階無窮小經過計算後也可以得到很大的值,尤其在涉及高階無窮小的除法和指數函式
19樓:匿名使用者
加減不能用等價無窮不替換
20樓:
a→0 lim(e^a - 1)/a=1
所以x→0 lim e^ - 1可以替換成2ln(1+x)/x - 2
求 lim(x→∞)[(x^3+x^2+x^1+1)^(1/3) - x] 的極限。需要詳細步驟。謝謝!
21樓:匿名使用者
^解:原式du=lim(x->∞
zhi) (分子回
有理答化)
=lim(x->∞)
=lim(x->∞)
=(1+0+0)/(1+1+1)
=1/3。
22樓:匿名使用者
x[(1+1/x+1/x^2+1/x^3)^(1/3)-1]=x[1+1/3x+o(1/x^2)-1]=1/3+o(1/x)
極限是1/3
用洛必達法則求極限limx趨向於0[1/ln(x+1)-1/x]
23樓:小小芝麻大大夢
limx趨向於0[1/ln(x+1)-1/x]的極限等於:1/2。
limx趨向於0[1/ln(x+1)-1/x]=[x-ln(x+1)]/xln(x+1)=[x-ln(x+1)]/x^2 【 ln(x+1)和x是等價無窮小,在x趨於0時】
=[1-1/(x+1)]/2x 【0/0型洛必達法則】=x/2x(x+1)
=1/2
擴充套件資料:極限的求法有很多種:
1、連續初等函式,在定義域範圍內求極限,可以將該點直接代入得極限值,因為連續函式的極限值就等於在該點的函式值。
2、利用恆等變形消去零因子(針對於0/0型)。
3、利用無窮大與無窮小的關係求極限。
4、利用無窮小的性質求極限。
5、利用等價無窮小替換求極限,可以將原式化簡計算。
6、利用兩個極限存在準則,求極限,有的題目也可以考慮用放大縮小,再用夾逼定理的方法求極限。
7、利用兩個重要極限公式求極限。
24樓:等待楓葉
limx趨向於0[1/ln(x+1)-1/x]的值為1/2。
解:lim(x→
0)(1/ln(x+1)-1/x)
=lim(x→0)((x-ln(1+x))/(x*ln(1+x)))
=lim(x→0)((x-ln(1+x))/(x*x)) (當x→0時,ln(1+x)等價於x)
=lim(x→0)((1-1/(1+x))/(2x)) (洛必達法則,同時對分子分母求導)
=lim(x→0)(x/(1+x))/(2x))
=lim(x→0)(1/(2*(1+x)))
=1/2
擴充套件資料:
1、極限的重要公式
(1)lim(x→0)sinx/x=1,因此當x趨於0時,sinx等價於x。
(2)lim(x→0)(1+x)^(1/x)=e,或者lim(x→∞)(1+1/x)^x=e。
(3)lim(x→0)(e^x-1)/x=1,因此當x趨於0時,e^x-1等價於x。
2、極限運演算法則
令limf(x),limg(x)存在,且令limf(x)=a,limg(x)=b,那麼
(1)加減運演算法則
lim(f(x)±g(x))=a±b
(2)乘數運演算法則
lim(a*f(x))=a*limf(x),其中a為已知的常數。
3、洛必達法則計算型別
(1)零比零型
若函式f(x)和g(x)滿足lim(x→a)f(x)=0,lim(x→a)g(x)=0,且在點a的某去心鄰域內兩者都可導,且
g'(x)≠0,那麼lim(x→a)f(x)/g(x)=lim(x→a)f'(x)/g'(x)。
(2)無窮比無窮型
若函式f(x)和g(x)滿足lim(x→a)f(x)=∞,lim(x→a)g(x)=∞,且在點a的某去心鄰域內兩者都可導,且
g'(x)≠0,那麼lim(x→a)f(x)/g(x)=lim(x→a)f'(x)/g'(x)。
25樓:匿名使用者
把1/ln(1+x)-1/x 通分變成[x-ln(1+x)]/[x*ln(1+x)]當x趨於0時,上式為0比0型不定式用洛必達法則,分子分母分別求導變成:[1-1/(1+x)]/[ln(1+x)+x/(1+x)] 上式仍是0比0型不定式 再次求導變成1/(2+x)當x趨於0時 上式極限為1/2 即為所求極限
求極限lim2x 1 3x 2 2,x 4時
對於這樣分子分母都趨向於0的求極限,有兩種選擇 1 分母有理化,看能不能消去分母 2 洛必達法則 對於分子分母都趨向於0或者是無窮大的時候limf x g x limf x g x 也就是對分子分母分別求導,如果求出來的導數還是趨向於0,那麼就繼續令f x 2x 1 3 g x x 2 2 則f x...
求極限x趨向0lim1x2xe
先明確是何種bai 未定式 以下說明 du及步驟同趨向zhi 1 x 2 x 1 x x 2 e 2上述說明了此題dao是0 0型。冪指函式求回導需要 e起來 答,怎麼做如下 1 x 2 x e 2 x ln 1 x 1使用羅比達法則即可 高數求極限的問題,x趨向於0時,1 x 2 x e 2 2的...
求極限lim 1 1 nn 2e n n 》無窮
題目應該是lim n e 2 1 1 n 2 n n 無窮大 吧?否則就是無窮大了 改了之後 limn e 2 1 1 n 2 n lim e 2 1 1 n lim n 2 n e 2 lim n 2 n 因為y x 與y 2 x 這兩個函式都連續可導 且都趨向於正無窮 所以求lim n 2 n ...