1樓:匿名使用者
圓的內接四邊形的外角等於的內對角
2樓:匿名使用者
圓的內接四邊形的外角等於它相鄰的內對角
圓的內接四邊形有哪些性質?
3樓:___耐撕
以圓內接四邊形abcd為例,圓心為o,延長ab至e,ac、bd交於p,則:
1、圓內接四邊形的對角互補:∠bad+∠dcb=180°,∠abc+∠adc=180°
2、圓內接四邊形的任意一個外角等於它的內對角:∠cbe=∠adc
3、圓心角的度數等於所對弧的圓周角的度數的兩倍:∠aob=2∠acb=2∠adb
4、同弧所對的圓周角相等:∠abd=∠acd
5、圓內接四邊形對應三角形相似:△abp∽△dcp(三個內角對應相等)
6、相交弦定理:ap×cp=bp×dp
7、托勒密定理:ab×cd+ad×cb=ac×bd
擴充套件資料:
判定定理:
1、如果一個四邊形的對角互補,那麼這個四邊形內接於一個圓。
2、如果一個四邊形的外角等於它的內對角,那麼這個四邊形內接於一個圓。
3、如果一個四邊形的四個頂點與某定點等距離,那麼這個四邊形內接於以該點為圓心的一個圓。
4、若有兩個同底的三角形,另一頂點都在底的同旁,且頂角相等,那麼這兩個三角形有公共的外接圓。
5、如果一個四邊形的張角相等,那麼這個四邊形內接於一個圓。
圓內接四邊形:
1、四邊形的四個頂點均在同一個圓上的四邊形叫做圓內接四邊形。
2、圓內接四邊形的對角互補。
3、圓內接四邊形的任意一個外角等於它的內對角。
4、圓的內接凸四邊形兩對對邊乘積的和等於兩條對角線的乘積。
5、如果一個四邊形的對角互補,那麼這個四邊形的四個頂點在同一個圓上。
6、圓內接四邊形面積s=√[(p-a)(p-b)(p-c)(p-d)]。(a,b,c,d為四邊形的四邊長,其中p=(a+b+c+d)/2)
4樓:鈺鈺
1、四點共圓;
2、四邊形對角互補;
3、四邊形某外角等於其內對角。
園內接四邊形判定定理:
1、如果一個四邊形的對角互補,那麼這個四邊形內接於一個圓;
2、如果一個四邊形的外角等於它的內對角,那麼這個四邊形內接於一個圓;
3、如果一個四邊形的四個頂點與某定點等距離,那麼這個四邊形內接於以該點為圓心的一個圓;
4、若有兩個同底的三角形,另一頂點都在底的同旁,且頂角相等,那麼這兩個三角形有公共的外接圓;
5、如果一個四邊形的張角相等,那麼這個四邊形內接於一個圓;
6、相交弦定理的逆定理;
7、托勒密定理的逆定理。
5樓:寧馨兒文集
那是四邊形的對角線所先鋒的兩個三角形有共同的外接圓的。
圓內接四邊形性質和三角形外角性質是什麼?
6樓:橋樑abc也懂生活
以右圖所示圓內接四邊形abcd為例,圓心為o,延長ab至e,ac、bd交於p,則:
▶圓內接四邊形的對角互補:∠bad+∠dcb=180°,∠abc+∠adc=180°
▶圓內接四邊形的任意一個外角等於它的內對角:∠cbe=∠adc▶圓心角的度數等於所對弧的圓周角的度數的兩倍:∠a0b=2∠acb=2∠adb
▶同弧所對的圓周角相等:∠abd=∠acd▶圓內接四邊形對應三角形相似:△abp∽△dcp(三個內角對應相等)▶相交弦定理:ap×cp=bp×dp
示例圖▶托勒密定理:ab×cd+ad×cb=ac×bd
圓內接四邊形的性質定理
7樓:小費
以右圖所示圓內接四邊形abcd為例,圓心為o,延長ab至e,ac、bd交於p,則:
▶圓內接四邊形的對角互補:∠bad+∠dcb=180°,∠abc+∠adc=180°
▶圓內接四邊形的任意一個外角等於它的內對角:∠cbe=∠adc▶圓心角的度數等於所對弧的圓周角的度數的兩倍:∠aob=2∠acb=2∠adb
▶同弧所對的圓周角相等:∠abd=∠acd▶圓內接四邊形對應三角形相似:△abp∽△dcp(三個內角對應相等)▶相交弦定理:ap×cp=bp×dp
▶托勒密定理:ab×cd+ad×cb=ac×bd
什麼是圓內接四邊形外角等於內對角
8樓:吃拿抓卡要
圓內接四邊形有對角互補的性質.
每對對角所對的弧合起來都是一個整圓,所對圓心角的和為360°。根據每個圓周角等於同弧所對圓心角的一半可以知道,每組內對角的和為180°
外角與相鄰內角也有互補的關係,所以等於內對角
圓內接四邊形的性質
9樓:花降如雪秋風錘
圓內接四邊形的性質一共有7條,如下:
1、圓內接四邊形的對角互補:∠bad+∠dcb=180°,∠abc+∠adc=180°
2、圓內接四邊形的任意一個外角等於它的內對角:∠cbe=∠adc3、圓心角的度數等於所對弧的圓周角的度數的兩倍:∠aob=2∠acb=2∠adb
4、同弧所對的圓周角相等:∠abd=∠acd5、圓內接四邊形對應三角形相似:△abp∽△dcp(三個內角對應相等)
6、相交弦定理:ap×cp=bp×dp
7、托勒密定理:ab×cd+ad×cb=ac×bd
10樓:娃哈哈鏡
如四邊形abcd內接於圓o,延長ab至e,ac、bd交於p,則a+c=180度,b+d=180度,
角abc=角adc(同弧所對的圓周角相等)。
角cbe=角d(外角等於內對角)
△abp∽△dcp(三個內角對應相等)
ap*cp=bp*dp(相交弦定理)
ab*cd+ad*cb=ac*bd(托勒密定理)
11樓:泠月藏笑
圓內接四邊形的對角互補.
圓的內接四邊形的對角互補,並且任意一個外角等於它的內對角.
12樓:沒有全能
圓內接四邊形對角互補,並且任何一個外角都等於它的內對角。
哪有這麼多性質啊?
13樓:倚天♂屠龍
的確只有兩個嘛,一個是它的對角互補,另一個是它每一個內角的外角都等於這個內角的對角.
圓內接四邊形的任意一個外角等於它的內對角是什麼意思
14樓:天道釋緣衣者
圓內接四邊形有對角互補的性質.畫圖給你看
15樓:飛那赤喬
因為圓內接四邊形對角互補,結論很顯然正確,
因為這個角和外角也是互補的!
圓內接四邊形的一個外角等於它的內對角是什麼意思?
16樓:歡歡喜喜
圓內接四邊形的一個外角與它相鄰的那個內角所對的角是相等的。這是圓內接四邊形的一個性質定理。如圖:
圓的內接四邊形的對角互補,並且任何外角都等於它的內對角
圓的內接四邊形對焦互補,顯然是說,對角和為180度。我們都知道,圓心角是其圓周角的兩倍,如圖所示 劣角bod 2倍 bad,優角bod 2倍 bcd,顯然劣角bod 優角bod 360 所以 bad bcd 180 即結論得證。任何一個外角都等於它的內對角是指,其外角等於它內角的對焦,具體到圖上,則...
圓內接四邊形的性質與判定定理問題
1 g過b作圓o切線mn,由弦切角定理 內dam d,ban b,又 dam ban 180 所以 容b d 180 2 由1 得 bad c 180 又 bad eab 180 所以 eab c 圓內接四邊形的全部判定定理 方法1從被證共圓的四點中先選出三點作一圓,然後證另一點也在這個圓上,若能證...
當圓內接四邊形的對角線是直徑時,有什麼性質
1 內接圓的四邊形,任意對角所對弧合成圓周。因此,兩對對角分別互補。2 平行版四邊權形的任意對角都相等 任意鄰角都互補。3 符合題意的內接於圓的平行四邊形是個矩形。4 矩形對角線的交點到四個頂點的距離相等。本題中,該點即是圓心。5 總結,命題得證。圓的內接四邊形有哪些性質?以圓內接四邊形abcd為例...