1樓:哈哈哈哈
v=∫(1,2)2πx(x-1/x)dx=2π∫(1,2)(x^2-1)dx=2π(x^3/3-x)(1,2)=2π(8/3-2-1/3+1)=8π/3
2樓:匿名使用者
直線與曲線的交點:(0,0)、(1,1),所圍區域是第一象限內一弓形,繞 x 軸旋轉一週後外形似一圓錐;
v=∫π(y1²-y2²)dx=[(π*1²)*1]/3﹣∫π(x²)²dx=(π/3)﹣(π/5)*x^5|=2π/15;
由曲線y=1/x與直線y=x和x=2所圍成的平面圖形繞y軸旋轉一週所成旋轉體的體積為多少?
3樓:史桂蘭晉寅
平面圖形的三個頂點(1,1),(2,1/2),(2,2).
畫個示意圖易知
所求旋轉體積
=圓柱體積-曲邊圓臺體積-圓臺體積
=int[1/2,2](pi*2^2)dy-int[1/2,1](pi*(1/y)^2)dy-int[1,2](pi*y^2)dy
=8pi/3.
4樓:滑蝶焉戊
你的思路是錯誤的,所以你的結果一定不對。你的思路是計算圖形沿x軸旋轉的計算方法
先求出一半的體積然後再乘以2
。沿y軸不行,以為要考慮到半徑的變化。x軸旋轉時,sinx代表旋轉體的微分半徑,但是y軸時不行。
求曲線y=x^2,直線x=2,y=0所圍成的圖形,繞y軸旋轉所得旋轉體的體積
5樓:drar_迪麗熱巴
利用薄殼法,得
體積=2π∫(0,2)xydx
=2π∫(0,2)x³dx
=π/2 x的4次方 (0,2)
=8π薄殼的幾何形狀和變形情況通常都很複雜,必須引入一系列簡化假設才能進行研究。最常用的假設是基爾霍夫-樂甫假設,以此為基礎可建立薄殼的微分方程組,通過解微分方程組可得到殼體中的位移和應力。
基爾霍夫-樂甫假設 2023年德國的h.阿龍將薄板理論中的基爾霍夫假設推廣到殼體。2023年經英國的a.e.h.樂甫修正,形成至今仍然廣泛採用的薄殼理論。
6樓:登興有譙水
這個體積公式,y=f(x),x=a,x=b,x軸圍成的曲邊梯形繞x軸旋轉一週形成的實心立體的體積公式
v=π∫(0,1)f^2(x)dx
你現在求的是兩個題體積的差,帶入公式就得到上面的解題過程。
7樓:匿名使用者
利用薄殼法,得
體積=2π∫(0,2)xydx
=2π∫(0,2)x³dx
=π/2 x的4次方 (0,2)=8π
求由曲線y=1/x,y=x 及x=2 所圍成圖形的面積及該圖形繞x 軸旋轉一週所成旋轉體的體積.
8樓:洪範周
所成旋轉體的體積.=5.68 其表面積=30.01 如圖所示:
求由曲線y=1/x,y=x與x=2所圍成圖形的面積,以及該圖形繞x軸旋轉而成的立體的體積
9樓:唐衛公
y = 1/x與交於a(1, 1), 與x = 2交於(2, 1/2)
積分割槽間為[1, 2],此時y =x在y = 1/x上方s = ∫₁²(x - 1/x)dx = (x²/2 - lnx)|₁² = (2 - ln2) - (1/2 - 0) = 3/2 - ln2
v = ∫₁²π(x² - 1/x²)dx = π(x³/3 + 1/x)|₁² = π(8/3 + 1/2) - π(1/3 + 1) = 11π/6
10樓:有沒有使用者名稱呢
s=∫(0,1)xdx+∫﹙1,2﹚1/x dx=1/2+ln2
v=∫﹙0,1﹚πx²dx + ∫﹙1,2﹚ π﹙1/x﹚² dx=π1/3 + π1/2=π5/6
曲線y=x²與直線x=1及x軸所圍成的平面圖形繞y軸旋轉一週得到的旋轉體體積是多少?
11樓:drar_迪麗熱巴
答案為π/2。
解題過程如下:
先求y=1,y軸與y=x²所圍成的圖形旋轉一週得到的旋轉體體積,再利用整體圓柱的體積π減去上述體積即為所求,其中y=x²要化為x等於√y。公式如下:
v=π-∫(0,1)π(√y)²dy
=π-π/2[y²](0,1)
=π-π/2
=π/2
二次函式表示式為y=ax2+bx+c(且a≠0),它的定義是一個二次多項式(或單項式)。
如果令y值等於零,則可得一個二次方程。該方程的解稱為方程的根或函式的零點。
函式性質
二次項係數a決定拋物線的開口方向和大小。當a>0時,拋物線開口向上;當a<0時,拋物線開口向下。|a|越大,則拋物線的開口越小;|a|越小,則拋物線的開口越大。
一次項係數b和二次項係數a共同決定對稱軸的位置。當a與b同號時(即ab>0),對稱軸在y軸左側;當a與b異號時(即ab<0),對稱軸在y軸右側。(可巧記為:左同右異)
常數項c決定拋物線與y軸交點。拋物線與y軸交於(0, c)
12樓:匿名使用者
先求y=1,y軸與y=x²所圍成的圖形旋轉一週得到的旋轉體體積,再利用整體圓柱的體積π減去上述體積即為所求,其中y=x²要化為x等於√y。公式如下:
v=π-∫(0,1)π(√y)²dy
=π-π/2[y²](0,1)
=π-π/2
=π/2
13樓:慕要辰星
用公式是2π∫(0,1)ydx,然後把y換成x2,或者用微元法
,按x到x+dx作為一個小微元,高近似為y,將這部分繞y軸旋轉的體積看做是一個空心的圓柱,厚度為dx,將它沿著高切開,之後為一個長寬高分別為2πx(也就是圓的周長)、y、dx的長方體,然後進行積分,也就是衍生出來的公式。
14樓:貓果
先把函式改寫成x(y)的形式,通過x和y的對應關係寫出積分割槽間,對x(y)在所求區間進行積分就可以了
vy=π∫(0,1)1²dy-π∫(0,1)(√y)²dy
15樓:
繞x軸旋轉得到的體積
vx=π∫(0到2)(x²)²dx=32π/5繞y軸旋轉得到的體積
vy=π∫(0到4)2²dy-π∫(0到4)(√y)²dy=8π
由曲線y=[x-1][x-2]和x軸圍成的平面圖形,此圖形繞y軸旋轉一週的旋轉體積
16樓:納喇彩榮倪琴
求由曲線copyy=x²,
x=1,y=0所圍成平面圖形的面積,和此圖形繞x軸旋轉生成旋轉體的體積
解:面積s=[0,1]∫x²dx=x³/3︱[0,1]=1/3體積v=[0,1]∫πy²dx=[0,1]∫πx⁴dx=π(x^5)/5︱[0,1]=π/5.
17樓:冷晚竹佟鳥
解選擇x積分變數∫21
2πx[0-y]dx
=2π∫2
1-x[x-1][x-2]dx
=-2π∫2
1[x^3-3x^2+2x]dx
=π/2
希望可以幫到你
歡迎追問
由曲線y=1/x和直線x=1,x=2及y=0圍成的平面圖形繞x軸旋轉一週所的旋轉體體積。
18樓:市素蘭渾橋
條直線x=1,x+y-2=0和抄x-y-2=0圍成一個封襲閉的平面圖形bai.求此平面圖形繞直線dux=1旋轉一週所得旋zhi轉體的體積dao
和表面積.考點:旋轉體(圓柱、圓錐、圓臺);稜柱、稜錐、稜臺的體積.專題:計算題;空間位置關係與距離.分析:
同一座標系內作出三條直線,得它們的交點為a(1,1)、b(1,-1)、c(2,0),△abc構成以c為直角頂點的等腰直角三角形.由此可得所求旋轉體是兩個底面半徑為1,高為1的全等圓錐拼接而成,結合錐體體積公式可得本題的答案.解答:解:作出直線x=1,x+y-2=0和x-y-2=0,如圖
它們的交點分別為a(1,1),b(1,-1),c(2,0),且△abc構成以c為直角頂點的等腰直角三角形,以直線ab:x=1為軸旋轉一週,
所得幾何體為兩個底面半徑為1,高為1的全等的圓錐拼接而成的錐體.∴所求幾何體的體積為:v=2•
13πr2h=
2π3;表面積為s=
12l•2πr•2=22π.
19樓:庫佑平澄茶
解圖形繞y軸旋轉
,則該立體可看作圓柱體(即由x=1,y=e,x=0,y=0所圍成的圖形繞y軸所得版的立方體)權
減去由曲線y=e^x,y=e,x=0所圍成的圖形繞y軸所得的立體,因此體積為
v=π*1²*e-∫【1→e】[π(ln
y)²dy]
=πe-∫【0→1】[πx²
d(e^x)]
下面對∫【0→1】[πx²
d(e^x)]用分部積分法
∫【0→1】[πx²
d(e^x)]
=π(1²*e-0)-π[∫【0→1】[e^xdx²]
=πe-2π[∫【0→1】[e^x*x
dx]=πe-2π[∫【0→1】[x
de^x]
=πe-2π(1*e-0)+2π[∫【0→1】[e^xdx]=πe-2πe+2π(e-1)
=πe-2π
於是v=πe-∫【0→1】[πx²
d(e^x)]
=πe-(πe-2π)=2π
曲線y x2 1,直線x 2及x軸所圍成的平面圖形繞x軸旋轉
v 21 f x dx 21 x?1 dx 13x x 21 43 由曲線y x 2,直線x 2及x軸所圍成的平面圖形分別繞x軸,y軸旋轉一週所得旋轉體。計算體積 20 繞x軸旋轉得到的體積 vx 0到2 x dx 32 5繞y軸旋轉得到的體積 vy 0到4 2 dy 0到4 y dy 8 曲線y ...
將由曲線y x和y x 2所圍成的平面圖形繞x軸旋轉一週,求
直線與曲線的交點 0,0 1,1 所圍區域是第一象限內一弓形,繞 x 軸旋轉一週後外形似一圓錐 v y1 y2 dx 1 1 3 x dx 3 5 x 5 2 15 將由曲線y x和y x 2所圍成的平面圖形繞x軸旋轉一週,求所得旋轉體的體積 這個體積公式,y f x x a,x b,x軸圍成的曲邊...
求由曲線y x 2與y 2 x 2所圍成的平面圖形的面積
解 平面圖形的面內積 2 容 0,1 2 x x dx 4 0,1 1 x dx 4 x x 3 0,1 4 1 1 3 8 3 定積分bai 曲線 duy 1 x與直線 zhiy x,y 2所圍成的面dao積就是專曲線y 1 x與直線y x,x 2所圍成的面積 屬面積分兩部分求 左邊是1 2 右邊...