1樓:匿名使用者
直線與曲線的交點:(0,0)、(1,1),所圍區域是第一象限內一弓形,繞 x 軸旋轉一週後外形似一圓錐;
v=∫π(y1²-y2²)dx=[(π*1²)*1]/3﹣∫π(x²)²dx=(π/3)﹣(π/5)*x^5|=2π/15;
將由曲線y=x和y=x^2所圍成的平面圖形繞x軸旋轉一週,求所得旋轉體的體積
2樓:聲美媛莘詩
這個體積公式,y=f(x),x=a,x=b,x軸圍成的曲邊梯形繞x軸旋轉一週形成的實心立體的體積公式
v=π∫(0,1)f^2(x)dx
你現在求的是兩個題體積的差,帶入公式就得到上面的解題過程。
3樓:析長順委辰
直線與曲線的交點:(0,0)、(1,1),所圍區域是第一象限內一弓形,繞
x軸旋轉一週後外形似一圓錐;
v=∫π(y1²-y2²)dx=[(π*1²)*1]/3﹣∫π(x²)²dx=(π/3)﹣(π/5)*x^5|=2π/15;
將曲線y=x與y=x∧2所圍成的平面圖形繞x軸旋轉一週,所得旋轉體的體積為
4樓:匿名使用者
這是定積分中微元法的應用問題
y=x和y=x^2的交點是(0,0)和(1,1) 你可以畫一下圖,我這不好弄,不好意思啦
所以也就是求下限為0,上限為1,被積部分為(x-x^2)dx 的積分
=1/2(x^2)-1/3(x^3)---下限為0上限為1
=(1/2乘1^2-1/3乘1^3)-(1/2乘0^2-1/3乘0^3)
=1/6
抱謙我只能打成這樣了,積分的符號我不會打上去,你勉強看看吧,不明白再問吧!嘻嘻!!
5樓:姓連枝貢冬
解:由x²-2x=x(x-2)=0,得x₁=0,x₂=2;即直線與拋物線相交於o(0,0)和a(2,4).
=(1/3)×π×4²×2-[0,2]∫π(x²)²dx=(32/3)π-π[(x^5)/5]︱[0,2]=(32/3)π-(32/5)π=(64/15)π
將由曲線y=x和y=x^2所圍成平面圖形繞x軸旋轉一週,求所得旋轉體的體積
6樓:匿名使用者
π∫(0~1)[(x)²-(x²)²]dx=π(x^3/3-x^5/5)|(0~1)=2π/15
求曲線y=x和y=x²所圍成的圖形繞軸y=3旋轉所得的旋轉體體積
7樓:寂寞的楓葉
所得的旋轉體體積13π/15。
解:因為直線y=x與曲線y=x^2的交點為點o(0,0)及點a(1,1)。
因此通過定積分可得旋轉體體積v,則
v=∫(0,1)π(3-x^2)^2dx-∫(0,1)π(3-x)^2dx
=π∫(0,1)((3-x^2)^2-(3-x)^2)dx
=π∫(0,1)(x^4-7x^2+6x)dx
=π*(x^5/5-7x^3/3+3x^2)(0,1)
=13π/15
即所得的旋轉體體積13π/15。
擴充套件資料:
1、定積分∫(a,b)f(x)dx的性質
(1)當a=b時,∫(a,b)f(x)dx=0。
(2)當a>b時,∫(a,b)f(x)dx=-∫(b,a)f(x)dx。
(3)常數可以提到積分號前。即∫(a,b)k*f(x)dx=k*∫(a,b)f(x)dx。
2、利用定積分求旋轉體的體積
(1)找準被旋轉的平面圖形,它的邊界曲線直接決定被積函式。
(2)分清端點。
(3)確定幾何體的構造。
(4)利用定積分進行體積計算。
3、定積分的應用
(1)解決求曲邊圖形的面積問題
(2)求變速直線運動的路程
做變速直線運動的物體經過的路程s,等於其速度函式v=v(t) (v(t)≥0)在時間區間[a,b]上的定積分。
(3)求變力做功
某物體在變力f=f(x)的作用下,在位移區間[a,b]上做的功等於f=f(x)在[a,b]上的定積分。
8樓:liv客戶
還是收拾收拾自己手機死死死繼續幾點能到寶貝
設d為曲線y=x^2與直線y=x所圍成的有界平面圖形,求d繞x軸旋轉一週所得旋轉體的體積v?
9樓:匿名使用者
用墊圈法算繞x軸的體積,大體積減去小體積就可以了。
求由曲線y=x^2及x=y^2所圍圖形繞x軸旋轉一週所生成的旋轉體的體積。最好有圖形和計算的詳細過程,謝謝。 15
10樓:薔祀
解:易知圍成圖形為x定義在[0,1]上的兩條曲線分別為y=x^2及x=y^2,
旋轉體的體積為x=y^2,
繞y軸旋轉體的體積v1 減去 y=x^2繞y軸旋轉體的體積v2。
v1=π∫ydy,v2=π∫y^4dy 積分割槽間為0到1,v1-v2=3π/10.
注:函式x=f(y)繞y軸旋轉體的體積為v=π∫f(y)^2dy.
擴充套件資料:
傳統定義
一般的,在一個變化過程中,假設有兩個變數x、y,如果對於任意一個x都有唯一確定的一個y和它對應,那麼就稱x是自變數,y是x的函式。x的取值範圍叫做這個函式的定義域,相應y的取值範圍叫做函式的值域 。
近代定義
設a,b是非空的數集,如果按照某種確定的對應關係f,使對於集合a中的任意一個數x,在集合b中都有唯一確定的數 和它對應,那麼就稱對映 為從集合a到集合b的一個函式,記作 或 。
其中x叫作自變數, 叫做x的函式,集合 叫做函式的定義域,與x對應的y叫做函式值,函式值的集合 叫做函式的值域, 叫做對應法則。其中,定義域、值域和對應法則被稱為函式三要素
定義域,值域,對應法則稱為函式的三要素。一般書寫為 。若省略定義域,一般是指使函式有意義的集合 。
函式過程中的這些語句用於完成某些有意義的工作——通常是處理文字,控制輸入或計算數值。通過在程式**中引入函式名稱和所需的引數,可在該程式中執行(或稱呼叫)該函式。
類似過程,不過函式一般都有一個返回值。它們都可在自己結構裡面呼叫自己,稱為遞迴。
大多數程式語言構建函式的方法裡都含有函式關鍵字(或稱保留字)。
參考資料:
11樓:青春愛的舞姿
求曲線的y=x2的級別,以及y等於3x周圍的新藥課程旋轉一週所稱的旋轉固體的體積。
由曲線y=x^2,直線x=2及x軸所圍成的平面圖形分別繞x軸,y軸旋轉一週所得旋轉體。計算體積 20
12樓:匿名使用者
繞x軸旋轉得到的體積
vx=π∫(0到2)(x²)²dx=32π/5繞y軸旋轉得到的體積
vy=π∫(0到4)2²dy-π∫(0到4)(√y)²dy=8π
求曲線y=x^2與直線y=2x所圍平面圖形繞x軸旋轉一週所得旋轉體的體積
13樓:匿名使用者
求曲線y=x²與直線y=2x所圍平面圖形繞x軸旋轉一週所得旋轉體的體積解:由x²-2x=x(x-2)=0,得x₁=0,x₂=2;即直線與拋物線相交於o(0,0)和a(2,4).
=(1/3)×π×4²×2-[0,2]∫π(x²)²dx=(32/3)π-π[(x^5)/5]︱[0,2]=(32/3)π-(32/5)π=(64/15)π
14樓:匿名使用者
要用到積分,由旋轉體體積的公式有:v=∏ ∫(f(x))^2dx所以由題意可得y=x^2和y=2x相交與(2,0)v=∏∫02(y^1)dy-∏∫02(y/2)^2dy=4∏/3
其中∏是pai
求由曲線y x的平方與直線y x 2所圍成的平方圖形的面積
令x x 2,解得x 1或x 2 1 2 x 2 x dx x x 2x 1 2 2 2 2 2 1 1 2 1 9 2 所求圍成的平面圖形的面積為9 2。通過構建方程組可以求解出兩個函式的交點位置 從而可以求解出這個面積在x軸上的起點為 1,終點為2 接下來,可以對上述兩個函式求積分,再相剪,於是...
求由曲線y x 2與y 2 x 2所圍成的平面圖形的面積
解 平面圖形的面內積 2 容 0,1 2 x x dx 4 0,1 1 x dx 4 x x 3 0,1 4 1 1 3 8 3 定積分bai 曲線 duy 1 x與直線 zhiy x,y 2所圍成的面dao積就是專曲線y 1 x與直線y x,x 2所圍成的面積 屬面積分兩部分求 左邊是1 2 右邊...
拋物線y x 2與直線y x 2圍成的圖形分別繞x軸和y軸旋轉轉所得的體積
我也來湊熱鬧 圍成的圖形分別繞x軸和y軸旋轉轉所得的體積為 45.30和14.07.如圖所示 請核對資料無誤後,再採納如何?y x 2 x 2 交點 2,4 bai 1,1 繞x軸旋轉du 就是y x 2 繞x旋轉圍zhi成的體積dao減去y x 2圍城成的體積 第一個是截專面積是梯形 屬 4 1 ...