1樓:
sn=-an-½ⁿˉ¹+2
sn-₁=-an-₁-½ⁿˉ²+2
2an-an-₁=-½ⁿˉ²
2ⁿˉ¹an-2ⁿˉ²an-₁=-1
bn-bn-₁=2ⁿan-2ⁿˉ¹an-₁=-2為等差數列
2樓:雖然
1,,,,因為sn=-an-(1/2)^n-1+2<1>所以sn-1=-an-1-(1/2)^n-2+2<2>
<1>-<2>得an=an+an-1-(1/2)^n-1+(1/2)^n-2
所以an=-1/2^n然後再求bn也可以
2...**=(n+1)/n*an中的 * 是什麼東西????乘還是乘方?
3樓:匿名使用者
^1.證:
n=1時,s1=a1=-a1-(1/2)^0+2=-a1+12a1=1
a1=1/2
n≥2時,
sn=-an-(1/2)^(n-1) +2 s(n-1)=-a(n-1)-(1/2)^(n-2)+2
sn-s(n-1)=-an-(1/2)^(n-1)+2+a(n-1)+(1/2)^(n-2)-2=-an+a(n-1)-1/2^(n-2)
2an=a(n-1)-1/2^(n-2)
等式兩邊同乘以2^(n-1)
an×2ⁿ=a(n-1)×2^(n-1) -2an×2ⁿ-a(n-1)×2^(n-1)=-2,為定值。
bn=an×2ⁿ
bn-b(n-1)=-2,為定值。
b1=a1×2=(1/2)×2=1
數列是以1為首項,-2為公差的等差數列。
an×2ⁿ=bn=1+(-2)(n-1)=-2n+3an=(3-2n)/2ⁿ
數列的通項公式為an=(3-2n)/2ⁿ
2.題目寫得太不清楚,是**=[(n+1)/n]×an,還是**=(n+1)/[n×an],請寫清楚,再來回答。
數學數列,已知數列an的前n項和為Sn,a1 3且a n 1 2Sn 3,求數列an的通項公式
解 1 n 2時,a n 1 2sn 3 an 2s n 1 3 a n 1 an 2sn 3 2s n 1 3 2ana n 1 3an a n 1 an 3,為定值。又a1 3,數列是以3為首項,3為公比的等專比數列,屬通項公式為an 3 2 bn 2n 1 an 2n 1 3 前n項和tn b...
已知數列an的前n項和為Sn,a12,nan1Snn
1 bainan 1 sn n n 1 n 1 an sn 1 n n 1 dun zhi2 兩式相減可得,daonan 1 n 1 an sn sn 1 2n即nan 1 n 1 an an 2n,回n 2 整理可得,an 1 an 2 n 2 由a1 2,可得a2 s1 2 4,a2 a1 2適...
已知數列An的前n項和為Sn,a1 3 2,2Sn n 1)An 1 (n2)求An的通項公式
2an 2sn 2s n 1 n 1 a n 1 nan a n 1 an n 2 n 1 a n 1 a1 n 2 n 1 n 1 n 3 2 n 2 2,a n 1 3 n 2 4,an 3 n 1 4 2sn n 1 an 1 2sn 1 nan 1 12an n 1 an nan 1 an ...