函式凹凸區間怎麼求

2021-03-07 06:01:24 字數 4215 閱讀 3748

1樓:牙牙啊

討論二階導數的正負,若在某區間為正則為凹區間,若在某區間為負則為凸區間。

一般地,把滿足[f(x1)+f(x2)]/2>f[(x1+x2)/2]的區間稱為函式f(x)的凹區間;反之為凸區間;凹凸性改變的點叫做拐點。

通常凹凸性由二階導數確定:滿足f''(x)>0的區間為f(x)的凹區間,反之為凸區間;

例:求y=x^3-x^4的凸凹區間和拐點。

解:y'=3x2-4x3,y''=6x-12x2;

y''>0,得:0所以,凹區間為(0,1/2);凸區間為(-∞,0),(1/2,+∞);拐點為(0,0),(1/2,1/16);

函式的定義:

給定一個數集a,假設其中的元素為x。現對a中的元素x施加對應法則f,記作f(x),得到另一數集b。假設b中的元素為y。

則y與x之間的等量關係可以用y=f(x)表示。我們把這個關係式就叫函式關係式,簡稱函式。函式概念含有三個要素:

定義域a、值域c和對應法則f。其中核心是對應法則f,它是函式關係的本質特徵。

函式最早由中國清朝數學家李善蘭翻譯,出於其著作《代數學》。之所以這麼翻譯,他給出的原因是「凡此變數中函彼變數者,則此為彼之函式」,也即函式指一個量隨著另一個量的變化而變化,或者說一個量中包含另一個量。

函式的定義通常分為傳統定義和近代定義,函式的兩個定義本質是相同的,只是敘述概念的出發點不同,傳統定義是從運動變化的觀點出發,而近代定義是從集合、對映的觀點出發。

2樓:匿名使用者

求該函式的二階導數,討論二階導數的正負,若在某區間為正則為凹區間,若在某區間為負則為凸區間。

3樓:匿名使用者

如果你在學高數的話 你就用二階導數來判斷 正則為凹區間 負則為凸區間。

如果你是高中生的話 你可以這麼判斷[f(x1)+f(x2)]/2

4樓:匿名使用者

二階導數大於零,凸區間

二階導數小於零,凹區間

5樓:手機使用者

定分和不定積分)及他們的應用。

理工類考的除上述內容外還有長微分,級數等內容。

2難易度:經管和理工的難易度不同,經管類只要求會簡單運算,而理工類要求要透徹掌握!

一、函式、極限和連續

(一)函式

(1)理解函式的概念:函式的定義,函式的表示法,分段函式。

(2)理解和掌握函式的簡單性質:單調性,奇偶性,有界性,週期性。

(3)瞭解反函式:反函式的定義,反函式的圖象。

(4)掌握函式的四則運算與複合運算。

(5)理解和掌握基本初等函式:冪函式,指數函式,對數函式,三角函式,反三角函式。

(6)瞭解初等函式的概念。

(二)極限

(1)理解數列極限的概念:數列,數列極限的定義,能根據極限概念分析函式的變化趨勢。會求函式在一點處的左極限與右極限,瞭解函式在一點處極限存在的充分必要條件。

(2)瞭解數列極限的性質:唯一性,有界性,四則運算定理,夾逼定理,單調有界數列,極限存在定理,掌握極限的四則運演算法則。

(3)理解函式極限的概念:函式在一點處極限的定義,左、右極限及其與極限的關係,x趨於無窮(x→∞,x→+∞,x→-∞)時函式的極限。

(4)掌握函式極限的定理:唯一性定理,夾逼定理,四則運算定理。

(5)理解無窮小量和無窮大量:無窮小量與無窮大量的定義,無窮小量與無窮大量的關係,無窮小量與無窮大量的性質,兩個無窮小量階的比較。

(6)熟練掌握用兩個重要極限求極限的方法。

(三)連續

(1)理解函式連續的概念:函式在一點連續的定義,左連續和右連續,函式在一點連續的充分必要條件,函式的間斷點及其分類。

(2)掌握函式在一點處連續的性質:連續函式的四則運算,複合函式的連續性,反函式的連續性,會求函式的間斷點及確定其型別。

(3)掌握閉區間上連續函式的性質:有界性定理,最大值和最小值定理,介值定理(包括零點定理),會運用介值定理推證一些簡單命題。

(4)理解初等函式在其定義區間上連續,並會利用連續性求極限。

二、一元函式微分學

(一)導數與微分

(1)理解導數的概念及其幾何意義,瞭解可導性與連續性的關係,會用定義求函式在一點處的導數。

(2)會求曲線上一點處的切線方程與法線方程。

(3)熟練掌握導數的基本公式、四則運演算法則以及複合函式的求導方法。

(4)掌握隱函式的求導法、對數求導法以及由引數方程所確定的函式的求導方法,會求分段函式的導數。

(5)理解高階導數的概念,會求簡單函式的n階導數。

(6)理解函式的微分概念,掌握微分法則,瞭解可微與可導的關係,會求函式的一階微分。

(二)中值定理及導數的應用

(1)瞭解羅爾中值定理、拉格朗日中值定理及它們的幾何意義。

(2)熟練掌握洛必達法則求「0/0」、「∞/ ∞」、「0?∞」、「∞-∞」、「1∞」、「00」和「∞0」型未定式的極限方法。

(3)掌握利用導數判定函式的單調性及求函式的單調增、減區間的方法,會利用函式的增減性證明簡單的不等式。

(4)理解函式極值的概念,掌握求函式的極值和最大(小)值的方法,並且會解簡單的應用問題。

(5)會判定曲線的凹凸性,會求曲線的拐點。

(6)會求曲線的水平漸近線與垂直漸近線。

三、一元函式積分學

(一)不定積分

(1)理解原函式與不定積分概念及其關係,掌握不定積分性質,瞭解原函式存在定理。

(2)熟練掌握不定積分的基本公式。

(3)熟練掌握不定積分第一換元法,掌握第二換元法(限於三角代換與簡單的根式代換)。

(4)熟練掌握不定積分的分部積分法。

(二)定積分

(1)理解定積分的概念與幾何意義,瞭解可積的條件。

(2)掌握定積分的基本性質。

(3)理解變上限的定積分是變上限的函式,掌握變上限定積分求導數的方法。

(4)掌握牛頓—萊布尼茨公式。

(5)掌握定積分的換元積分法與分部積分法。

(6)理解無窮區間廣義積分的概念,掌握其計算方法。

(7)掌握直角座標系下用定積分計算平面圖形的面積。

四、向量代數與空間解析幾何

(一)向量代數

(1)理解向量的概念,掌握向量的座標表示法,會求單位向量、方向餘弦、向量在座標軸上的投影。

(2)掌握向量的線性運算、向量的數量積與向量積的計算方法。

(3)掌握二向量平行、垂直的條件。

(二)平面與直線

(1)會求平面的點法式方程、一般式方程。會判定兩平面的垂直、平行。

(2)會求點到平面的距離。

(3)瞭解直線的一般式方程,會求直線的標準式方程、引數式方程。會判定兩直線平行、垂直。

(4)會判定直線與平面間的關係(垂直、平行、直線在平面上)。

五、多元函式微積分

(一)多元函式微分學

(1)瞭解多元函式的概念、二元函式的幾何意義及二元函式的極值與連續概念(對計算不作要求)。會求二元函式的定義域。

(2)理解偏導數、全微分概念,知道全微分存在的必要條件與充分條件。

(3)掌握二元函式的

一、二階偏導數計算方法。

(4)掌握複合函式一階偏導數的求法。

(5)會求二元函式的全微分。

(6)掌握由方程f(x,y,z)=0所確定的隱函式z=z(x,y)的一階偏導數的計算方法。

(7)會求二元函式的無條件極值。

(二)二重積分

(1)理解二重積分的概念、性質及其幾何意義。

(2)掌握二重積分在直角座標系及極座標系下的計算方法。

六、無窮級數

(一)數項級數

(1)理解級數收斂、發散的概念。掌握級數收斂的必要條件,瞭解級數的基本性質。

(2)掌握正項級數的比值數別法。會用正項級數的比較判別法。

(3)掌握幾何級數、調和級數與p級數的斂散性。

(4)瞭解級數絕對收斂與條件收斂的概念,會使用萊布尼茨判別法。

(二)冪級數

(1)瞭解冪級數的概念,收斂半徑,收斂區間。

(2)瞭解冪級數在其收斂區間內的基本性質(和、差、逐項求導與逐項積分)。

(3)掌握求冪級數的收斂半徑、收斂區間(不要求討論端點)的方法。

七、常微分方程

(一)一階微分方程

(1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解。

(2)掌握可分離變數方程的解法。

(3)掌握一階線性方程的解法。

(二)二階線性微分方程

(1)瞭解二階線性微分方程解的結構。

(2)掌握二階常係數齊次線性微分方程的解法。v

求函式yxx1的單調區間,極值,凹凸區間,拐點

y x 1 1 x 1 y 1 1 x 1 2 極大值y 2 極小值y 0 x 2,0 單調遞減 y 1 2 x 1 3 拐點x 1,x 1,y 0,凹凸區間不用再說了吧 求函式y x x x 2 1 的單調區間,凹凸區間,極值,拐點,漸近線 y x 3 x 2 1 y 3x 2 x 2 1 2x ...

求函式fx3xx3的單調區間凹凸區間極值和拐點

解 f x 3 3x 2 0 解得bai x 1或x 1 du,1 1,為其減 區間zhi 1,1 為其增dao區間 回 0 為凹區間,0,為凸區答間 極大值為f 1 3 1 2,極小值為f 1 4 1 1 1,1 1 1,減區間 極小點 增區間 極大點 減區間 極小值為 2 極大值為2 增區間 1...

求函式連續區間,求教,函式連續區間怎麼求

f x 作為兩個函bai數的差,du 其連續區間應該等於兩個函zhi數f x 與f x 1 n 的連續dao區間的 交集。回 由f x 的連續區間為 0,1 可知,答f x 1 n 的連續區間為 1 n,1 1 n 只需令x 1 n 0 x 1 n 1分別求出 1 n 1 1 n,即得f x 1 n...