1樓:暖光小圖
(1)x≤1/2時 f(x)=x2+2x 令抄f(x)=0得 x=0或x=-2
x>1/2時 f(x)=x-2/x =(x2-2)/x =0 x=-√2(捨去)或x=√2
故 求函式f(x)的零點為x=0.,-2,√3的點
(2)-1≤x≤1/2時
f(x)=x2+2x +a-1=(x+1)2+a-2
f(x)在[-1 ,1/2]上遞增。f(x)最大值為f(1/2)=1/4+a
x>1/2時
f(x)=x-2/x在(1/2 ,+∞)為增函式
所以 f(x)> 1/2-2/(1/2)=-7/2
故1/4+a≤-7/2 a≤-15/4
已知函式f(x)=(x^2+2x+a)/x,x∈【1,正無窮)。a=1/2,函式最小值為多少?
2樓:匿名使用者
a=1/2
f(x)=x+0.5/x+2
由單調性證明f(x)在【√2/2,+無窮)是單調遞增的所以當x=1時取最小值為7/2
任意x∈〖1,+∞),(x^2+2x+a)/x≥0均成立。
所以x2+2x+a≥0恆成立
(x+1)2≥1-a恆成立
所以x+1≥√(1-a)
或x+1≤-√(1-a)
x≥√(1-a) -1
或x≤-√(1-a) -1
其解集應為:x≥1
所以√(1-a) -1<1
1-a<4
a<-3
3樓:匿名使用者
我只做第二問,
f(x)>0恆成立,則有
(x^2+2x+a)/x>0,
x+2+(a/x)>0,
a/x>-(x+2),而,x∈【1,正無窮)。
a>-(x+2)x=-x^2-2x,
令,g(x)=-x^2-2x,x∈【1,正無窮)。
g(x)=-(x+1)^2+1.
g(x)對稱軸x=-1,拋物線開口向下,
當x=1時,g(x)有最大值,g(x)max=g(1)=-1-2=-3.
只有當a>g(x)最大值時,f(x)>0恆成立,即有,a>-3.
4樓:惹待風暴
f(x)=(x^2+2x+a)/x,x∈【1,正無窮)。a=1/2.
y=(x^2+2x+1/2)/x=x+1/2x+2,在[根號2/2,正無窮)遞增。(0,根號2/2】遞減。最小值為f(1)=3.5
f(x)=(x^2+2x+a)/x=x+a/x+2,.........
已知函式f (x)=(2x-a+ 1)ln(x a 1)的的定義域為 (-a-1, 無窮 ),若
5樓:廣州辛易資訊科技****
已知函式f(x)=a的2x次方-2a的x+1次方+2(a大於0,a不等於1)的定義域為[-1,正無窮)(1)若a=2求f(x)的值域知道手機網友你好:你要釋出問題,就把問題發完整。問的題目是什麼,寫清楚。
以免浪費簡訊費,耽誤你。
2014高考數學題.已知函式f(x)=x^2+e^x-1/2(x<0)與
6樓:塗智華
題目可轉化為:假設對稱點為(x0,y0)和(-x0,y0),其中:x0>0
此時有:x0^2+e^(-x0)-1/2=x0^2+ln(x0+a)即x^2+e^(-x)-1/2=x^2+ln(x+a)在x>0時有解可化為:e^(-x)-1/2=ln(x+a)通過數形結合:
顯然有:a<根號e
已知函式f x x 3 ax 2 bx c x1,2且函式f x 在x 1和x
解 f x x ax bx c,x 1,2 1 f x 3x 2ax b f x 在x 1和x 2 3上取得極值,x 1和x 2 3是3x 2ax b 0的根帶入得3 2a b 0且4 3 4 3a b 0解得a 1 2,b 2 2 f x 3x x 2 x 1 3x 2 x 1,2 x 1是極小值...
已知函式fxx2ax,且f
解答 f x x a x f 1 2 則 1 a 2 a 1 f x x 1 x 1 f x x 1 x f x f x 是奇函式 2 設1內x1x2 0 f x1 f x2 0 f x1 正無窮 上是增函式 3由2最大值f 5 5 1 5 26 5最小值容f 2 2 1 2 5 2 f x x2 ...
已知函式fxx22x,x0x22x,x0,若f
當a 自0時,f bai a f a a 2 2a a2 2a 2a2 4a 0,解得0 a 2.du 當a 2a2 4a 0,解得 2 a 0.2 a 2.a的取值範圍是 2,2 故答案為 2,2 已知函式f x x2 2x,x 0x2?2x,x 0.若f a f a 0,則a的取值範圍是 a.1...