1樓:冠初翠頻樂
|不一定,a*=|a|a^抄-1——伴隨矩陣
等與bai其行列式乘以它du的逆。因此zhi,a*b*的問題轉化成了他們的逆矩陣的dao問題。正定矩陣的逆矩陣仍然是正定矩陣,於是,這道題就相當於問正定矩陣的乘積是否為正定矩陣。
當然很容易證明,正定矩陣的乘積的特徵值都是整數。因此有人誤以為正定矩陣的乘積正定了。這也是這道題之所以被很多試卷採用的原因之一。
其實,正定矩陣要求三條:第一,實矩陣。第二,對稱。
第三,特徵值都大於零。兩個正定矩陣的乘積可以保持第一,第三個條件,唯獨很難保證第二個條件。只有當他們相乘可以交換的時候,才可以保證第二個條件。
所以,正定矩陣的乘積未必正定。
最後,提醒一下,在處理矩陣的判斷題的時候,要先考慮矩陣的乘積特殊性:不為零的乘積為零;乘積是否可以交換。祝你學有所成!
證明若AB是兩個實對稱的n階正定矩陣,則AB亦然
這個命題本來就不對 在 a b是兩個實對稱的n階正定矩陣 條件下,讓ab正定的充要條件是ab ba。但是,在這個條件下,可以得到a b正定 存在一個不全為0的xi可有q1 x ax 0,q2 x bx 0,於是有q1 q2 x a b x 0 則有a b正定 題目不對吧 如a 1 0 b 3 1 則...
設A,B為n階矩陣,若ABE,證明ABBA
如果a b e 那麼代入得到 ab a e a a a2 ba e a a a a2 顯然ab ba 設a,b都是n階矩陣,ab a b,證明 1 a e,b e都可逆 2 ab ba 1 a e,b e是n階方陣,b e a e b e ab a b e e因此,a e,b e互為逆矩陣 2 根據...
1 設A為n階對稱矩陣,P為n階可逆矩陣,證明B P T
b bait p t ap t p t a t p p t a p b 所以b也是對稱陣du 因為p是可逆陣,所zhi以r p n 然後利dao 用兩個不等式 回 r ap r a r p n r a n n r a 1 r ap min r a 2 由 1 2 得到r ap r a 同樣的,再把答...